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ABSTRACT 

Good error recovery for compilers depends on accurate diagnosis of errors. When an 

error is misdiagnosed, the error message issued for it is apt to be misleading. Worse, the 

error recovery system may leave the compiler in a configuration that will cause spurious 

errors to be reported later. This dissertation presents new error recovery techniques for 

compilers that generally diagnose errors more accurately than earlier techniques. 

The major innovation embodied in the new error recovery techniques is the use of 

general static semantic information to help detect and diagnose syntactic errors. There 

are usually many possible ways of recovering from an err-or. Testing if a potential 

recovery leads to semantic problems later involves executing the semantic actions 

associated with that recovery. If a potential recovery is rejected, the semantic actions 

that were performed while testing it must have no apparent effect on later compilation. 

Thus, it must be possible to undo the effects of semantic actions. For conventional 

compilers, the mechanisms needed to reverse the effects of semantic actions are too slow 

to be practical. A new compiler organization that permits semantic actions to be undone 

efficiently is presented. This new organization is suited for compiling languages, such as 

C, Pascal, and Ada, that require declarations to precede uses. 

Two further ways of improving the performance of error recovery systems are 

considered. Error recovery systems sometimes fail to accurately diagnose an error 

because the parser has performed reductions based on the erroneous input. A variety of 

techniques for avoiding the adverse effects of such reductions are presented and 

compared. Also, a new panic mode algorithm for use with LR parsers is presented. 

The new error recovery techniques have been applied in an error checking program 

for Pascal. The recoveries produced by that program are shown to compare favorably 

with those produced by two well known error recovery systems. Finally, some drawbacks 

of the new techniques and some directions for future work are discussed. 
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Introduction 

Ideally, a compiler should detect and correctly identify every error in every program 

submitted to it. That goal, regrettably, is unattainable. Many errors either cannot be 

detected at compile time or are so difficult to detect that it is not practical to check for 

them. Even when an error is detected, it is, in general, impossible to correctly diagnose 

the error. Diagnosing an error involves guessing how a program deviates from the 

programmer's intent. Through heuristics, those guesses can be made highly accurate. 

Still, some failures must be expected. 

The problem of providing good error recovery in a practical compiler is 

compounded by the need for efficiency. To handle errors well, a compiler must record 

information and perform tests that would otherwise be unnecessary. For example, to be 

able to associate locations with errors, the position of each symbol in the source text 

must be recorded. Those additional operations will cause the compiler to be slower. A 

slow compiler is as undesirable as one that does not handle errors well. A practical 

compiler must strike a balance between the efficiency and the power of its error recovery 

system. 

Error recovery is a four step process. The four steps are detection, diagnosis, 

reporting, and patching. Detection consists of discovering the presence of an error. 

Errors are often classified according to the part of the compiler by which they are 

detected. Thus, errors detected by the lexical analyzer are called lexical errors, those 

detected by the parser are called syntax errors, and those detected by semantic action 

routines are called semantic errors. Diagnosis consists of guessing the location and 

nature of the error. The results of the diagnosis are used when reporting and patching 

the error. Reporting consists of providing the programmer with information to help him 

identify the error. Patching consists of modifying the state of the compiler so that 

compilation can continue. 

Many error recovery techniques have been proposed. Among the most commonly 

used techniques are 

1. Error Productions. If a compiler writer anticipates that certain 

syntax errors may occur, he can extend his grammar for the 

language to be compiled to i,:1clude the erroneous constructs. Rules 

that are part of such extensions are called error productions. The 

compiler writer must provide for reporting errors handled by error 

productions. 

2. Local Recoveries. A local recovery is a recovery that is 

determined by the immediate context in which the error was 

detected. Most local recovery algorithms consider only simple 

recovery actions such as insertion, deletion or replacement of single 

symbols. Local recovery algorithms usually do not require the 

compiler writer to supply any special information; any necessary 

information is inferred from the parser. Many algorithms allow the 

1 
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compiler writer to supply a small amount of information that is used 

to fine-tune the choice of recoveries. 

3. Panic Mode. A panic mode recovery consists of deleting symbols 

from the remaining input until a recognized symbol or sequence of 

symbols is at the head of the input. The parse stack is then 

reconfigured so that parsing can continue over the remaining input. 

Good error recovery systems typically incorporate the three recovery techniques 

mentioned above and perhaps others as well. Recoveries that involve changes to the 

program text at the token level only are customarily called repairs. 

In theory, all syntax errors could be handled by error productions. If the grammar 

for a language is extended to accept all possible input strings, no other syntactic error 

recovery capabilities need be provided. However, a grammar capable of distinguishing 

erroneous syntax from legal syntax for any input is apt to be large and of a form for 

which efficient parsers cannot be constructed. Therefore, error productions are normally 

used only for errors that cannot be handled well using other recovery techniques. 

Error productions are often used to relax restrictions in the language to be 

compiled. For example, in Pascal [ANS83], declarations must appear in a fixed order. If 

a declaration occurs out of order, there is little chance that the error could be patched by 

a local recovery. A panic mode recovery for such an error would be tantamount to 

deleting the declaration. Many spurious semantic errors result from such a recovery. 

Therefore, extending the grammar to allow declarations to appear in any order appears 

to be the only way to handle such errors gracefully. 

Local recoveries work best for simple errors. For example, consider the erroneous 

Pascal code fragment 

• . - i + 1 
J .- 0; 

where i and j are integer variables. The likely error is that a semicolon has been omitted 

from the end of the first line. A good repair algorithm should determine that a semicolon 

should be inserted between the two lines. A statistical study of errors in Pascal programs 

[RD78] has shown that, for Pascal at least, local recovery techniques should be effective 

for most common errors. 

There are often many different local recoveries that could be used to patch an error. 

For example, suppose the erroneous statement 

a := m); 

appears in a Pascal program. The apparent error is that the statement contains an 

unmatched right parenthesis: The error could be patched by inserting a left parenthesis 

before the identifier m or by deleting the right parenthesis. Either repair would seem 

reasonable. However, the error could be patched just as effectively by replacing the right 

parenthesis with a semicolon. That repair is apt to seem unreasonable to most 

programmers. Many local recovery algorithms allow a compiler writer to bias the choice 

of recoveries in favor of those he feels are desirable. The compiler writer is allowed to 

assign costs to each possible recovery. \Vhenever there is a choice of local recoveries that 

patch an error, the recovery whose cost is the lowest is selected. 

Panic mode recoveries are useful when an error deviates so far from a legal text 

that no simple correction can patch the error. Suppose, for example, that the Algol-like 

statement 
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for i := 1 step 1 until n do S 

appears in a Pascal program. It is unlikely that most local recovery algorithms could 

patch such an error. In such cases, a panic mode recovery may provide the only way to 

patch the error. Nonetheless, panic mode recoveries should only be used as a last resort 

since the error messages produced by panic mode algorithms are usually less helpful than 

those produced by other error recovery techniques. 

The main goal of this work has been to develop techniques for diagnosing errors 

more accurately than is done by earlier error recovery systems. Accurate diagnosis is the 

key to good error recovery. The diagnosis of an error largely determines the way in 

which the compiler will recover from it. If a diagnosis is incorrect, the resulting recovery 

may cause spurious errors to be detected. Most good error recovery algorithms diagnose 

an error by testing several possible diagnoses and selecting the one that seems the best. 

One way of improving that process is to increase the number of diagnoses that are 

considered since the correct diagnosis cannot be chosen if it is not considered. Another 

way is to improve the criteria for selecting recoveries. Both techniques have been applied 

in this work. 

Most existing error handlers make no use of semantic information when diagnosing 

syntax errors. As a result, they sometimes choose diagnoses that lead to spurious 

semantic errors later. Consider the erroneous Pascal statement 

if i j then skip 

where i and j are integer variables. The probable error in this instance is that a 

relational operator has been omitted between i and j. This example was submitted to 

two well-known error handling systems. One of them recovered from the error by 

inserting the operator '+' between i and j; the other by deleting j. In both cases, the 

expression created to replace the predicate expression of the if-statement is of type 

integer. Thus, both recoveries cause a spurious semantic error to be detected later since 

the type of a predicate expression must be Boolean. 

The major innovation of this work has been the creation of techniques for using 

general static semantic information to help detect and diagnose syntax errors. Error 

recovery algorithms that take advantage of semantic information will be called 

semantics-directed. As the previous example demonstrates, use of semantic information 

can improve the choice of error diagnoses. If semantic information is to be used to help 

diagnose syntax errors, it must be available while parsing. Hence, semantic analysis must 

be carried out in tandem with parsing. Further, any semantic actions performed while 

testing a potential diagnosis must not affect later stages of compilation if that diagnosis is 

rejected. Therefore, semantics-directed error recovery requires that the compiler be 

organized so that the effects of semantic actions can be reversed. 

Syntax errors often go undetected until after the parser has performed actions that 

make it hard to recover from them. For example, bottom-up parsers sometimes perform 

reductions without examining the token to the right of the symbols involved in the 

reductions. Consider, for example, the erroneous Pascal statement 

n := m, + 1 

The apparent error is the presence of a comma in a context where commas are not 

allowed. If the error is detected before any reductions involving m are performed, a good 

local recovery algorithm should determine that the comma should be deleted. However, 

some parsers for Pascal will reduce the text preceding the comma to a statement in spite 
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of the presence of the comma. Unless the effects of the erroneous reductions can be 

reversed, it is unlikely a good recovery will be found. An analogous problem for top

down parsers is discussed by Burke and Fisher [BF82]. 

Many good panic mode algorithms have been developed for top-down parsers. The 

panic mode algorithms that have been proposed for LR parsers do not work nearly so 

well. As a part of this work, an improved panic mode algorithm for LR parsers has been 

developed. 

An implementation is the best test of an error handling system. Many impractical 

error handling techniques have been described in the literature. With but few exceptions, 

those techniques either have not been implemented or have been implemented only for 

unrealistic languages that do not expose their flaws. The new error recovery techniques 

described in later chapters have been implemented as part of an error checking program 

for Pascal called the Pascal auditor. Measurements of the Pascal auditor's speed and 

space requirements show the practicality of the new techniques. 

A new parser generator named Bison has been written to assist construction of 

compilers using the new error recovery techniques. Bison was designed to support 

experiments with a variety of error recovery techniques. The parsers produced by Bison 

are faster than those produced by most other parser generators. Furthermore, Bison 

itself is faster than most other parse generators because it is based on more modern 

algorithms. 

As a demonstration of the power of the new error recovery techniques, the Pascal 

auditor has been compared with two well-known error handling systems. Ripley and 

Druseikis [RD78] have created a sample of erroneous Pascal programs that has become a 

standard test suite for error handling systems. The recoveries produced by the Pascal 

auditor for that test suite have been compared with those produced by the other systems. 

The remaining chapters are organized as follows. The next chapter introduces the 

terminology and notation used in later chapters. Chapters 3 through 5 describe schemes 

for using semantics to help detect and recover from errors. Chapter 6 explores 

techniques for preventing or reversing the effects of erroneous reductions. Chapter 7 

presents the new panic mode algorithm. Chapter 8 describes the Pascal auditor and the 

empirical data obtained from it. The final chapters discuss lessons learned from the 

implementation, directions for future work, and conclusions. All examples of errors 

presented in the remaining chapters are taken from Pascal programs unless stated 

otherwise. 
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Terminology 

Let S be a set of symbols. A string over S is a finite sequence of symbols in S. The 

empty sequence is called the empty string and is denoted by the Greek letter ~. The 

length of a string a 1 ... a11 is n. For any symbol a, a /e is the string consisting of k 

instances of a. Sic is the set of all strings over S of length k. s• is the set of all strings 

over S (including ~). Let x = a 1 ..• am and y = b1 ••• b11 be any two strings. The 

concatenation of x andy (in that order) is the string a 1 ••• amb 1 .:.b11 • Concatenation is 

indicated by adjacency. For example, the concatenation of x, y, and z is denoted as xyz. 

A string x is a prefix of a stringy if and only if y = xz for some z E s•. 

Let V be a finite set of symbols, and let E be a proper subset of V. Let N denote 

V- E. A production or rule over V and E is an ordered pair (A, x) where A EN and 

X E v·. A production (A, x) is denoted as A- X. For any rule A-x, A is its left

hand side (lhs) and x is its right-hand side (rhs). 

A context-free grammar G is a 4-tuple (V, E, P, S), where Vis a finite set of 

symbols, E is a proper subset of V, Pis a finite set of productions over V and E, and 

S E V. N denotes the set V- E. A symbol in E is a terminal symbol, and a symbol in 

N is a nonterminal symbol. The symbol S is the start symbol. 

For any two strings x, y E v•, the relation x ==:} y is true if and only if x = sZt, 

y = szt, and Z - z E P, for some Z E N and s, t, z E v•. The relation x ~ y is true 

if and only if x = sZt, y = szt, and Z- z E P, for some ZEN, t E E•, and 

s, z E v•. The symbol ~ denotes the reflexive transitive closure of ==:}, and ~ denotes 

the reflexive transitive closure of~· A string x derives a stringy if and only if x ~ y. 

A string x E v• is a sentential form of G if and only if S ~ x. A sentence of G is 

a sentential form x such that x E E•. The language defined by G is the set of all 

sentences of G and is denoted as L( G). A string x is a correct prefix if and only if x is 

the prefix of a sentential form. A string x is a right sentential form if and only if 

S ~ x. Let x = szt be a string such that S ~ sZt ~ szt. Then z is a handle of x. 

A derivation tree T of G is a labeled ordered tree such that 

1. Each interior node is labeled with a nonterminal symbol. 

2. Each leaf node is labeled with a terminal symbol or )... 

3. For each interior node v, let Vv ... , v11 be the immediate descendants 

of v. Let A be the symbol labeling v. Then either 

a) n = 1, v1 is labeled with~' and A - ~ E P, or 

b) vv ... ,v11 are labeled with the symbols a 1, .•• ,a11 respectively, 

and A- a1 ••• a11 E P. 

A parse tree is a derivation tree whose root node is labeled with the start symbol S. The 

frontier of a derivation tree Tis the string formed by concatenating the symbols labeling 

the leaves of T in left to right order. The frontier of every parse tree is a sentence of G. 

5 
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Every sentence is the frontier of at least one parse tree. 

An LR( k) parsing automaton M is an 8-tuple ( Q, V, E, P, f, g, q0 , $) where Q is a 

finite set of states, Vis a finite set of symbols, E i&. a proper subset of V, Pis a finite set 

of productions over V and E, f and g are functions, q0 E Q, and $ is a symbol such that 

$ ~ V. Q is the state set of M. N denotes V- E. The symbols in E are the terminal 

symbols and the symbols in N are the nonterminal symbols. Vs denotes V U { $ }, and 

Es denotes E U { $}. The action set AS of M is the set 

AS= {accept, shift, error} U {reduce p I p E P}. 

The function f is the action function of M; it is a total function of the form 

f: Q X Ef-AS. The function g is the go to function of M; it is a partial function of the 

form g: Q XV- ( Q - { q0} ). For every state q E Q other than q0 , there is exactly one 

symbol a such that g(p, a)= q for some p E Q. The symbol a is called the accessing 

symbol of q. The state q0 is the start state. The symbol $ is the endmarker. 

A configuration C of an LR(k) parsing automaton M is an ordered pair (r, x) 

where r is a finite nonempty sequence of states in Q, and x E E$. The string x must be 

of the form y$/c where y E E•. For any string x E r;•, the initial configuration of M 

for xis (q0 , x$1c). 

A move of an LR(k) parsing automaton M is a transition from one configuration to 

another. For each configuration C, there is at most one configuration C' such that the 

transition froiJl C to C' is a move. The relation between C and C' is denoted as 

C f- C'. The relation f- is determined by the action and goto functions of M. Let 

c = (r, x) where r = qi., ... ,qim and X = a1···an. Then the action(}' determined by M 

for C is a= f(qim• a1···alc)· If a= shift, then C f- (qi 1 ••• qimq, a2 ••• an) where 

q = g(q, a 1). If a= reduce p where p =A- b1 ... bll then C f- (qi
1 
••• q1m-tq, x} 

where q = g(qm-l• A). If a =accept or a =error, there is no move from C. 

A configuration C = (qi.···qim• x) is an accepting configuration if and only if 

x = $/c and f(qim• $/c)= accept. The parsing automaton M accepts a string x if and 

only if there is a sequence of configurations C 11 ••• , Cn such that C 1 is the initial 

configuration of M for x, Cn is an accepting configuration, and C 1 f- · · · f- Cn. The 

language of M is the set of all strings that M accepts and is denoted as L(M}. 

A configuration C = (qi 1 .
.. qim• a 1 ... an} is an error configuration if and only if 

f(qim• a 1 ... a~c) =error. When the parsing automaton enters an error configuration, it 

detects an error. 

An attribute grammar AG consists of a context-free grammar G = (V, E, P, S) 

augmented with attributes, semantic functions, and dependency vectors. For each 

symbol X E V, there is a finite set A(X) of attributes. A(X} is partitioned into two 

disjoint subsets, the inherited attributes I(X) and the synthesized attributes S(X). 

The set I(S), where S is the start symbol, must be empty. If X is a terminal symbol, 

then S(X) must be empty. The union of A(X) for all X E Vis A. Each attribute a E A 

is associated with a (possibly infinite) universe U a of values. 

For each production p = X 0 - X 1 ... Xn~ E P, there is an associated set of 

semantic functions and dependency vectors. For each synthesized attribute q of X 0, 

there is a function f&u. For each inherited attribute t of X~c, where 1 < k < nJl, there 

is a function /C,. Each function fCa is defined over 

Ua.X ... X Uam- Ua, 
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where m > 0, and ai E A for 1 < i ~ m. The arity of each semantic function may be 

different. 

Each semantic function !fa is paired with a dependency vector dfa. A dependency 

vector indicates which values of the attributes of the symbols X 0 , •.• ,Xn., are to be the 

arguments of the matching semantic function. The number of elements in each 

dependency vector must equal the arity of the corresponding semantic function. An 

attribute a of the symbol Xi, 1 < i < n,, can be represented by the ordered pair (i, a). 

Each element of a dependency vector is an ordered pair of that form. If the i·th element 

of dfa is ( i, a), then the domain of the i-th argument of !fa must be U a· The 

dependency set Dfa is the union of the elements of dfa· 

Let AG be an attribute grammar, and let G be its underlying context-free grammar. 

An attributed parse tree APT of AG is a parse tree T of G together with a function p.. 

The function p. is the meaning of the tree. The domain of p. is the set 

S = { (v, a) I vis a node ofT, and a E A{X) 
where X is the symbol labeling v } . 

For (v, a) E S, p.(v, a) E Ua. If (v, a) E S, then p.(v, a) is the value of a at v. An APT 

is an evaluation of the parse tree T if an only if 

1. Tis the underlying parse tree of the APT. 

2. For each interior node v of T whose sole descendant is labeled with 

>., let X be the symbol labeling v and let p = X- >.. For each 

f7 E S(X), p.(v, u) must equal fg17(p.(v, a 1), ••. ,p.(v, am)), where m is 

the arity of/&,, and d&, = ((0, at), ... ,(O, am)). 

3. For each interior node v of T whose immediate descendants v11 ••• , lin 

are labeled with symbols in V, let v0 = v, and let X 0 , ... ,Xn be the 

symbols labeling v0 , ••• ,v" respectively. Let p = X 0 - X 1 ... Xn. 

For each attribute u E S(X0), p.(v, a) must equal 

/&,(p.(lli
1
, a1), ••• ,p.(vi,., am)), where m is the arity of fgcn and 

d&, = ((i 1, a 1), .•. ,(im, am)). Similarly, for 1 < k < n and for each 

inherited attribute L E I(Xk ), p.( vk, L) must equal 

/f,(p.(lli
1
, a 1), ••• ,p.(vi,., am)), where m is the arity of /f" and 

df, = ((i 11 at), ... ,(im, am)). 

In other words, an APT is an evaluation if and only if the values assigned to the 

attributes are consistent with the values of the semantic functions for those attributes. 

Let p = X 0 - X 1 .•. X". Let a be an attribute of x., where 1 < k < n. The 

local closure Dfa of Dfa is the smallest set such that 

1. Dfa C Dfa, and 

2. if (i, a') E Dfa, then Dfa C Dfa. 

An £-attributed grammar is an attribute grammar AG such that for every rule 

p = X 0 - X 1 ... X" of the underlying context-free grammar of AG 

1. if u, rr E S(X0 ), then if (0, rr) E Dg17 , (0, u) ~ Dkrr", 
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2. if" E J(X.~c), 1 < k < n, then for all (i, a) E l5't, i < k, and 

3. if "E J(X.~c), 1 < k < n, then for all (k, a) E DktP, a E J(X.~c) and 

( k, £) (/. Dfa · 

These restrictions ensure that it is possible to evaluate the attributes of any parse tree in 

a single top-down left-to-right pass over that tree. 



, ... 

3 

Previous Proposals for 

Semantics-directed Error Recovery 

The idea of using semantics to help detect and recover from syntactic errors is not new. 

Many papers on syntactic error recovery suggest possible uses for semantic data. Most of 

them, however, do little more than mention that those possibilities exist. Still, some 

substantial work has been done in this area. At least two existing compilers use some 

static semantic data to assist in error recovery. 

Graham and Rhodes [GR75] were among the first to suggest that semantic 

information could aid in syntactic error recovery. At the end of their paper, they 

speculate on ways to improve their error recovery system. As an example of the possible 

uses of semantics, they suggest that when the recovery algorithm inserts an identifier, 

semantics might be used to decide which identifier should be inserted. That example 

seems ill-chosen. While semantic information might preclude a particular identifier from 

appearing in a given context, it rarely determines that a particular identifier must appear 

in that context. Graham and Rhodes also outline a scheme for permitting semantic 

analysis to continue after recovering from a syntax error. 

Other papers on syntactic error recovery also mention possible uses for semantic 

data. Pennella and DeRemer [PD77] consider ways of permitting semantic analysis to 

continue following recoveries from syntax errors. Mickunas and Modry [MM78] come 

closer to the ideas developed in this work. They suggest that semantic information might 

be usefully employed in choosing a recovery. They do not, however, suggest how to do 

so. 

Milton, Kirchhoff, and Rowland [MKR79] made a serious attempt to include 

semantics-directed error recovery as part of an attribute grammar based compiler 

generator. Their compiler generator is unusual in that the parsers it produces can use 

semantic information to help decide which parsing actions to ·perform. Their error 

recovery algorithm is derived from the algorithm proposed by Fischer, Milton, and 

Quiring [FMQ80]. The algorithm uses tables defined over symbols and attribute values. 

They state that the implemented algorithm does not use semantics because the tables 

would become too large. In saying so, they understate the problem. For any real 

programming language, the set of attribute values will be infinite. Therefore, the tables 

needed by the error recovery algorithm will also be infinite. Presumably, they would 

avoid this problem by restricting the set of attribute values that index the tables to some 

finite range. 

In her dissertation [Sch82], Cosima Schmauch presents a more practical proposal for 

semantics-directed error recovery. She too advocates using attribute grammars to define 

the static semantics of programming languages. However, in her scheme, the semantic 

checks associated with each rule are separated from the semantic functions that define 

the attributes' values. Those semantic checks are called primitive predicates. She 

proposes usmg the primitive predicates to guide the choice of recoveries. A recovery 

from a syntax error will be favored if it does not cause a primitive predicate to be 

9 
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violated. If every recovery causes a primitive predicate to be violated, the recovery that 

permits the greatest number of reductions before such a violation occurs is chosen. 

Because her algorithm was not implemented, it is hard to judge how well it might work. 

Intuitively, it seems that her scheme should produce good recoveries, but that compilers 

using it will be too slow to be practical. 

The error recovery algorithm of Feyock and Lazarus [FL76] makes significant use of 

semantic information. Their system assumes that the symbol table will be created in 

tandem with parsing. A global variable is used as a semantic error flag. 'Whenever a 

reduction is done according to a rule that contains an identifier or constant on the right

hand side, a check is made to determine if the semantics of that symbol are correct for 

the given context. If a semantic error is detected, the semantic error flag is set to true. 

For example, the semantic error flag is set to true if an undeclared identifier appears on 

the left-hand side of an assignment. 'When testing a possible recovery, the error recovery 

algorithm initially sets the semantic error flag to false. The test consists of modifying the 

parse stack according to the potential recovery and then parsing the following input text. 

Semantic checks are made during the test. The recovery is rejected if a syntactic error 

was discovered during the test or if the semantic error flag was set to true. 

Feyock and Lazarus used their system in a compiler for XPL (MHW70] called 

EXPL. They found that EXPL spent between 2 to 3 seconds on average for each error 

detected when running on an IBM 360/50. Although they state that that speed is 

acceptable, it is at least a dozen times slower than other error recovery algorithms that 

produce comparable results. Their use of semantics is not the major cause of the 

algorithm's inefficiency; rather, it is the algorithm's syntactic component that causes it to 

be slow. The cost of checking for semantic errors, though significant, is comparatively 

small. 

The paper by Feyock and Lazarus lacks detail. Many important questions about 

their system can only be answered by inference from the examples given at the end of the 

paper. Apparently, no semantic checks are made while parsing declarations, and no 

semantic actions are performed while testing potential recoveries. Those restrictions 

contribute to the efficiency and simplicity of their method but limit its power. 

The sample results presented by Feyock and Lazarus are very good. However, the 

examples appear to have been selected to show their system at its best. If their system 

works as described in their paper, it cannot handle multiple errors. If a statement 

contains two or more independent errors, all recoveries from those errors will be rejected. 

Feyock and Lazarus did not give any examples of statements that contained multiple 

errors in their paper. Also, they admit that if their error recovery algorithm finds more 

than one viable recovery, it does not do a good job of selecting among them. However, 

none of their examples illustrate this problem. 

The Feyock and Lazarus scheme for applying semantics to error recovery suffers 

from serious limitations. Their system apparently does not perform semantic actions 

while testing potential recoveries. Therefore, if the semantic action associated with a 

rule used in a reduction would normally alter the contents of the symbol table, the 

symbol table will be left unchanged while testing a potential correction. That limitation 

does not appear to be a problem for their XPL compiler. For other languages, however, 

it could prove a serious deficiency. For example, in Pascal, if a syntax error were 

detected in a with-statement and the semantics actions associated with that statement 

were not executed while testing potential recoveries, good recoveries might be rejected 

because of spurious semantic errors. Another limitation of their system is that it does 

not perform general semantic checks while testing potential recoveries. The only checks 
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they do are to check that identifiers and constants appear in syntactic contexts where 

they are semantically legal. That deficiency may prove a serious liability for languages 

with complex semantics, such as Adaf [DoD83]. 

The error recovery algorithm by Graham, Haley, and Joy [GHJ79] is the best 

known recovery algorithm that incorporates semantics. The Graham-Haley-Joy 

algorithm is implemented as a part of the Berkeley Pascal compiler and interpreter. It is 

similar to the Feyock-Lazarus algorithm in that whenever an identifier is encountered in 

a context where a particular class of identifier is required, a check is made to see if the 

identifier is of that class. The methods differ in their responses to errors detected by 

those checks. Instead of setting a flag to signal that an error has been discovered, the 

Graham-Haley-Joy system invokes the error handler. The error recovery algorithm first 

assigns a tentative cost to changing the identifier's semantics to the desired semantics. A 

test is then done to see if parsing can continue after that change. If a new error is found 

during the test, the cost associated with changing the semantics is increased. After the 

cost of the semantic change has been computed, a number of syntactic changes are also 

tested. The potential recovery assigned the lowest cost is selected as the recovery to be 

applied. 

One reason for the difference between the ways Berkeley Pascal and EXPL treat 

semantic errors is that Berkeley Pascal uses a less powerful but more efficient syntactic 

error recovery scheme. The error recovery algorithm used by EXPL is able to back up 

the state of the parse. Therefore, delaying detection of an error does not preclude 

finding the best recovery. However, the execution time costs associated with providing 

the ability to back up the parse are large. Partly for that reason, Berkeley Pascal does 

not include the ability to back up the parse. Therefore, if it delayed detecting semantic 

errors, it would sometimes be unable to find good recoveries. Consider the statement 

a( i] := 0 

where a is an array variable. The likely error is that a left parenthesis has been used 

where a left square bracket was intended. When a is encountered, the semantic check is 

made to see if a is the name of a procedure. The check fails, and so the error recovery 

algorithm is invoked. Eventually, the error recovery system replaces the left parenthesis 

with a left square bracket, and normal parsing resumes. Had the semantic check had not 

triggered the error recovery algorithm, the parser would treat the text up to the right 

square bracket as the start of a procedure statement. The error recovery algorithm 

would by then be unable to find a good recovery. 

Berkeley Pascal's error recovery algorithm does not always make good use of the 

semantic information available to it. Consider, for example, the erroneous Pascal 

statement 

p[x + 1) 

where p is declared to be a procedure of one parameter. The error is that a left square 

bracket has been used where a left parenthesis was intended. The left square bracket 

causes Berkeley Pascal to test if p is an array variable. Since it is not, the error recovery 

algorithm is invoked. The error recovery algorithm decides that the best recovery is to 

treat p as an array identifier. Then, when the parser reaches the right parenthesis, the 

t Ada. is a. registered tra.dema.rk of the U. S. Government - Ada. Joint Project Office. 
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error recovery algorithm is reinvoked. This time, it is unable to find a good local 

recovery. Therefore, it resorts to panic mode and eventually reports that a malformed 

expression has been found. The poor choice of a recovery illustrated by this example 

would have been avoided by increasing the cost of replacing an identifier with an 

identifier of another class. 

A major limitation of the schemes for applying semantics to syntactic error recovery 

proposed by Feyock and Lazarus and by Graham, Haley, and Joy is that they cannot 

take advantage of all of the semantic information that is available at compile time. The 

only semantic data they use is information about identifiers obtained from the symbol 

table and information about constants obtained from the lexical analyzer. Semantic data 

generated during semantic analysis is unavailable to either system because they both 

delay semantic analysis until after parsing has been completed. 
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Semantics-directed Error Recovery 

This chapter considers ways of extending existing local recovery algorithms to take 

advantage of semantic data. It begins with a survey of local recovery algorithms for LR 

parsers. The survey is followed by a discussion of techniques for using semantic data to 

enhance those algorithms. Finally, the question of how semantic data should be supplied 

to the error recovery routines is examined. 

4.1 Local Recovery Algorithms for LR Parsers 

Some local recovery algorithms can only be used with specific classes of parsers. This 

section surveys local recovery algorithms that can be used with LR parsers. LR parsing 

and its related subclasses are probably the most widely used table-driven parsing 

techniques. Therefore, local recovery algorithms that do not work for LR parsers are of 

lesser interest. 

A parser is a correct prefix parser if and only if for every input string 

a 1 ... a~; a~;+1 ..• an such that a 1 ... a~; is a correct prefix but a 1 ... a~; a~;+1 is not, the parser 

will not advance over a~;+1 before detecting an error. A class of parsers possesses the 

correct prefix property if and only if every parser in that class is a correct prefix parser. 

Every LR parser is a correct prefix parser. 

Let x = a 1 ..• a~; a~;+1 ..• an. Suppose that a parser has detected an error after 

advancing over a~; but before advancing over a~;+1 . Then the position in x between a~; 

and a~;+1 is the error's detection point. An error's detection point need not be its true 

location. Consider, for example, the code fragment 

i := i + 1; 
a [ i - j + 1] = 0 then S; 

The likely error here is that the keyword if has been omitted from the start of the 

second line. However, a normal LR(1) parser will not detect an error until it has shifted 

over the right bracket. Therefore, the error's detection point will be between the right 

bracket and the equals sign. 

Levy [Lev75] was among the first to propose a local recovery algorithm for LR 

parsers. Levy's algorithm is related to the minimum distance repair algorithms [AP72, 

Lyo74]. The only types of recoveries Levy considers are insertion and deletion of tokens. 

There is an a priori bound N on the number of insertions and deletions permitted for a 

single error. 

Let x = a 1 ••. a~; a~;+1 ••• an be a terminal string. Suppose an error has been detected 

in x and that its detection point is between a~; and ak+1. Levy's algorithm begins by 

performing a backward move. The input text is examined to determine the leftmost 

position i < k in x such that deleting ai or inserting a token immediately to the left of 

ai could be part of a recovery. The parser's configuration is then backed up to the 

13 
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configuration it had just after shifting over a;_1; if i =1, the parser is restored to its 

initial configuration. Consider, for example, the program shown in Figure 4.1. 

program max( input, output); 
var x, y: real; 

begin 

end. 

readln(x ); 
readln(y); 
if x := y then 

writeln(x) 
else 

writeln(y) 

Figure 4.1 Example illustrating backtracking in Levy's algorithm 

The error is that the token ':=' appears in the if-statement's predicate expression. It 

seems likely that the programmer meant to write '>=' but made a typographical error. 

Assume N = 1. Then the leftmost token in the program that could be involved in a 

recovery is the keyword if. Therefore, the parser will be backed up to the configuration 

it had just after shifting over the semicolon preceding the keyword if. 

After completing the backward move, the algorithm performs a forward move. 

Every modification of the input starting from position i that involves at most N 

insertions or deletions is considered. The forward move consists of a parallel parse over 

all of the modified strings. \Vhen the parse over one of the modified strings enters an 

error configuration, that string is dropped from consideration. The forward move 

continues until either all of the possible repairs are eliminated or all of the repairs still 

under consideration enter equivalent configurations. In the first case, presumably, the 

error recovery algorithm would next try panic mode. In the latter case, one of the 

repairs found to be viable would be applied. 

The local recovery algorithms next to be considered were all derived from the local 

recovery algorithm for simple precedence parsers proposed by Graham and Rhodes 

[GR75]. Like Levy, Graham and Rhodes use the terms forward move and backward 

move to name actions of their algorithm. However, the actions named by those terms 

are different for the two algorithms. 

The Graham-Rhodes algorithm is divided into two phases: a condensation phase 

followed by a correction phase. Suppose an error has been detected. During the 

condensation phase, information is gathered from the context surrounding the error's 

detection point. The first step of the condensation phase is the backward move. So long 

as the top of the parse stack contains a handle, that handle is reduced. Because simple 

precedence grammars are uniquely invertible, the nonterminal symbol to which the 

handle is to be reduced is uniquely determined by the handle. Therefore, only one 

sequence of reductions will be possible. The backward move is followed by the forward 

move. The forward move parses the text following the error's detection point. The 

forward move continues until either a second error is detected, or the only possible 

parsing action is a reduction involving symbols to the left of the error's detection point. 

The correction phase decides how to patch the error. The recoveries performed by 

the Graham-Rhodes algorithm consist of replacing a portion of the parse stack by the rhs 

of a rule. For each potential recovery, a check is made to ensure that parsing will be 
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able to continue if that recovery is applied. The cost of each recovery found to be viable 

is then evaluated. Any recoveries whose costs exceed a predetermined threshold are 

rejected. If the costs of any recoveries fall below the threshold, the recovery whose cost 

is the lowest is applied. 

The Graham-Rhodes algorithm cannot easily be adapted to work for LR parsers. 

For LR parsers, it is neither feasible nor necessary to do a backward move. Because LR 

grammars need not be uniquely invertible, there will usually be many different sequences 

of reductions that could be done for a given configuration of the parse stack. However, 

the purpose of a backward move is to gather information from the left context of an 

error's detection point. For an LR parser, much of that information is built into the 

parser's states. Therefore, doing a backward move would produce little information. 

The forward move poses a more serious problem. LR parsers use an unbounded 

amount of left context information to help decide which parsing actions to perform. It is 

impossible to know what the left context of text following an error's detection point 

should be. However, because a forward move never does a reduction involving symbols 

to the left of an error's detection point, the left context of text following an error's 

detection point can be regarded as simply a state of the parsing automaton. Therefore, 

the number of contexts from which parsing may continue is bounded by the number of 

states of the parsing automaton. 

The local recovery algorithm proposed by Mickunas and Modry [MM78] is a 

relatively straightforward adaptation of the Graham-Rhodes algorithm. Mickunas and 

Modry solve the forward move problem by performing multiple forward moves. Let a be 

the symbol immediately to the right of an error's detection point. The condensation 

phase of the Mickunas-Modry algorithm starts by identifying the set 'It of states that 

permit shifts over a. For each state q in 'It, the algorithm parses the text to the right of 

the detection point starting from state q. Each parse continues until either a second 

error is detected or the next parsing action is a reduction involving symbols to the left of 

the detection point. The sequence of states that is the result of a forward move is called 

a recovery candidate. Recovery candidates that are the results of parses that ended 

because the next action would be a reduction across the error's detection point are 

correction candidates. Recovery candidates that are the results of parses that ended 

because of later errors are holding candidates. Both the correction candidates and the 

holding candidates are sorted according to the number of tokens shifted before their trial 

parses halted. 

The correction phase of the Mickunas-Modry algorithm is quite different from that 

of the Graham-Rhodes algorithm. The Mickunas-Modry algorithm attempts to find the 

recovery candidate that best matches the parse stack. It invokes a correction algorithm 

that tests various repairs for each correction candidate in order, starting with the 

candidate that shifted over the most tokens. The correction algorithm returns either a 

possible repair along with a cost for applying that repair, or an indication that no repair 

was found. If any suitable repairs were found, the lowest cost repair is applied, and 

normal parsing resumes. If none of the correction candidates yielded a repair, the error 

recovery algorithm is recursively reinvoked for each holding candidate in an attempt to 

repair the error that caused the forward move to terminate. The correction algorithm is 

then invoked for each holding candidate whose forward move was repaired. If any of the 

holding candidates can be repaired, the best repair is applied, and normal parsing 

resumes. If none of the recovery candidates leads to a repair, the recovery algorithm 

fails. 
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The correction algorithm used by Mickunas and Madry takes two arguments: a 

parse stack and a recovery candidate. The algorithm attempts to find the lowest cost 

repair that bridges the gap between its arguments. The only repairs considered are 

insertions and deletions of single tokens. The algorithm tries insertions first. If there are 

any tokens such that inserting one of them between the parse stack and the recovery 

candidate permits parsing to continue, the least costly of those insertions is returned. If 

no such insertion is found, attempts are made to repair the error further down in the 

parse stack. Let a be the accessing symbol of the state at the top of the parse stack. Let 

'If = { q I g(q, a)= p}, where g is the parser's goto function, and p is the state at the 

start of the current recovery candidate. For each q E 'If, the correction algorithm is 

recursively reinvoked. The parse stack passed to the new invocation is the current parse 

stack minus its topmost element. The recovery candidate is the sequence of states 

formed by prepending q to the current recovery candidate. If any viable repairs are 

found, the lowest cost repair is returned as the result of the correction algorithm. 

Otherwise, deletions are attempted. Again, let a be the accessing symbol of the state at 

the top of the parse stack. If a is a terminal symbol, the stack is popped, and the 

correction algorithm is recursively reinvoked. If a is a nonterminal symbol, the parse 

stack is popped and then the string from which a was produced is reparsed ignoring the 

last token. The correction algorithm is then reinvoked. If deletion fails to produce a 

repair, the correction algorithm fails. 

The fundamental problem of the Mickunas-Modry algorithm is its inefficiency. 

Performing multiple forward moves is a major source of inefficiency. Study of the 

Mickunas-Modry algorithm when applied to the Ripley-Druseikis test suite [RD78] 

revealed that few forward moves continued for more than a few symbols. The number of 

forward moves that were done, however, was surprisingly large. Consider the statement 
. . 

quo := s over;; 

The likely error is that the identifier over was mistakenly used in place of the keyword 

div. The parser detects the error between the identifiers i and over. The condensation 

phase carries out forward moves starting with the identifier over for every state of the 

parsing automaton that permits a shift over an identifier. There are 102 such states (out 

of a total of 394 states) in the LALR(1) parser for Pascal used in this study. Because the 

next symbol is another identifier (j), every forward move immediately fails. Thus, every 

forward move becomes a holding candidate. For each of those forward moves, the error 

recovery algorithm is recursively invoked. Hence, for each of the original forward moves, 

another 102 forward moves are commenced. Most of those 10404 secondary forward 

moves produce correction candidates. Thus, after a few thousand applications of the 

correction algorithm, a repair will be produced. To be fair, it it must be admitted that 

this is an extreme case. Nonetheless, even for more common examples, the number of 

forward moves considered can be very large. 

Another solution to the forward move problem was proposed by Druseikis and 

Ripley [DR76] and independently by Pennella and DeRemer [PD78]. They create an 

extended parsing automaton that achieves the effects of multiple forward moves by 

performing a single forward move. The basis of their methods is that all of the forward 

parses can be carried out simultaneously provided they all perform the same reductions 

at the same points in the parse. The Druseikis-Ripley algorithm and the Pennella

DeRemer algorithm differ in matters of detail only; the formulation below is based on the 

Pennella-DeRemer algorithm. 

Let M be an LR(k) parsing automaton. Let q 1 and q2 be any two states of M, and 

let x be any lookahead string. Let o 1 = f(q 1, x) and let o2 = f(q 2, x ), where f is the 
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action function of M. Then q1 and q2 are a-equivalent over x if and only if a 1 =error, 

or a 2 =error, or a 1 = a 2• 

The Pennella-DeRemer algorithm uses a forward move automaton (FMA) to carry 

out its condensation phase. For each LR(k) parsing automaton M, there is a unique 

FMA. The FMA is another LR( k) parsing automaton. The state set of the FMA is the 

power set of Q, where Q is the state set of M. The set Q is the initial state of the FMA. 

The goto function 6 of the FMA is derived from the goto function g of M. For each state 

s of the FMA and for each symbol a, 8(s, a)= { q I for some p E Q, g(p, a)= q}. 

Similarly, the action function ¢> of the FMA is derived from the action function f of M. 

A state 8 of the FMA is consistent over a lookahead string x if and only if for all p, 

q E s, p and q are a-equivalent over x. For eaeh state s of the FMA and each lookahead 

string x, ¢>( s, x) = error if s is not consistent over x. The error action does not signify 

that a error has been detected; it is, rather, a signal that the FMA should cease parsing. 

Suppose 8 is consistent over x. If f(q, x) = error for all states q E s, then 

¢>(s, x) =error. Otherwise, there must be a single action a such that f(q, x) =a for 

some q E 8. In that case, ¢>( s, x) = a. Although it may at first appear that the FMA 

would be too large to be practical, it should be noted that most of the states of the FMA 

are inaccessible. Also, many of the states of the original parsing automaton can be 

shared by the FMA. Pennella and DeRemer report that the number of extra states 

needed for the FMA is about 20-50% of the number of states in the original parsing 

automaton. 

The Pennella-DeRemer algorithm assumes that the FMA is precomputed. When an 

error is detected, the condensation phase of the Pennella-DeRemer error recovery 

algorithm uses the FMA to parse the text following the error's detection point. The 

parse continues until either the FMA detects an error or an attempt is made to reduce 

across the point in the input string at which parsing using the FMA commenced. The 

result of the parse is the sequence of terminal and nonterminal symbols produced by the 

shifts and reductions performed by the FMA. Given that the FMA is an LR(k) parsing 

automaton, the time required for the forward move should be roughly equivalent to the 

time required for normal parsing. The only extra operations that need to be done are the 

checks to see if a reduction crosses the error's detection point. 

The condensation phase of the Pennella-DeRemer error recovery algorithm does not 

produce as much information as that of the Mickunas-Modry algorithm. The 

condensation phase of the Mickunas-Modry algorithm produces the set of sequences of 

states resulting from every parse that could possibly follow the detection point. The 

forward move performed by the FMA of the Pennella-DeRemer algorithm, on the other 

hand, produces only the sequence of terminal and nonterminal symbols that would be the 

common result of all parses starting from the detection point that do not lead to error 

configurations. As a result, the correction phase of the Pennella-DeRemer algorithm has 

less information available to it when selecting a repair. The correction phase, therefore, 

must test each possible repair it considers in ways that would be unnecessary for the 

Mickunas-Modry algorithm. Because each recovery candidate considered by the 

Mickunas-Modry algorithm is the result of parsing the string following the detection 

point starting from a given state, the correction phase need only check that a repair will 

cause the context to the left of the detection point to allow a transition into that state. 

The Pennella-DeRemer algorithm, on the other hand, must check that any possible repair 

will allow the parse to continue over the sequence of sym bois produced by the FMA. 

Before trying to repair any errors in a program, the entire program following the 

first error detected is parsed by the FMA. If the FMA halts before reaching the 

program's end, it begins parsing again starting from the symbol following the last symbol 
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it was able to shift. The correction phase of the algorithm then tries to find corrections 

that will transform the sequence of strings produced by the FMA into a sentential form. 

The correction phase tries three types of repair: insertion, deletion, and replacement of 

single tokens. The repairs are first applied at the point at the detection point of the first 

error. A repair succeeds if it permits the parser to shift over a predefined number of 

symbols. If none of the repairs tried at the detection point succeeds, the algorithm tries 

applying the repairs to the symbols to the left of the detection point in right to left 

succession until either a repair is found or the algorithm reaches the leftmost end of the 

string. After repairing the first error, the algorithm then continues parsing until it either 

accepts the input, or detects a subsequent error. If another error is detected, the 

correction phase is again applied .. Note that there,is no need to invoke the condensation 

phase again since the entire string has already been parsed by the FMA. 

The most recent error recovery algorithm for LR parsers was first proposed and 

implemented by Feyock and Lazarus [FL76J. Graham, Haley, and Joy [GHJ79] 

independently developed a more refined and more practical version of the algorithm. 

Burke and Fisher [BF82J subsequently made further extensions to it. Although this 

algorithm was first reported by Feyock and Lazarus, it has, perhaps unfairly, come to be 

known as the Graham-Haley-Joy algorithm. 

The Graham-Haley-Joy algorithm might best be described as a "shotgun" method. 

For each error detected, several recoveries are considered. The lowest cost recovery that 

allows parsing to continue is selected as the one to be applied. The algorithm possesses a 

fixed repertoire of repairs such as insertions, deletions, and replacements. Whenever an 

error is detected, the potential repairs are considered one at a time. Copies are made of 

the parse stack and a segment of the remaining input. Those copies are modified to 

reflect the repair being tested, and then they are parsed. The modified segment of the 

remaining input is called the test string, and the parse is called a forward move. (Note 

that "forward move" here means something different from either of the two previous uses 

of the same term.) The parse is halted when a new error is detected, the input string is 

accepted, or the parser shifts over the entire test string. Each repair is assigned a cost 

based on the nature of the repair. In addition, if the parse of the test string ends with an 

error, the cost of the repair is increased. If any suitable repairs are found for the given 

error, the lowest cost repair is applied and normal parsing resumes. Otherwise, the 

recovery algorithm resorts to panic mode. 

A straightforward implementation of the Graham-Haley-Joy algorithm may do a 

great deal of redundant parsing. For example, consider the code fragment 
. . . 
I := I ); 

if x < 0 then S; 

The error here is the pair of adjacent identifiers on the first line. Many of the possible 

repairs will permit parsing to continue through the if-statement on the second line. 

Hence, unless the test strings are made unreasonably short, at least a portion of the if

statement will be parsed repeatedly as potential repairs are tested. However, there is 

exactly one state that contains a shift over the token if in the LALR( 1) parser for Pascal 

used in this work. Therefore, for that parser, every parse of the if-statement will yield 

exactly the same result. 

A way of implementing the Graham-Haley-Joy algorithm that avoids most 

redundant parsing has been developed as a part of this work. Let a 1 ... am and b 1 ... bn be 

two strings such that ai ... am = b j ... bn. Suppose that the state of the parser just before 

shifting over ai is the same as its state just before shifting over bi. Let k be the height of 
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the parse stack just before the parser shifts over ai. Then the actions of the parser after 

shifting over ai will be identical to its actions after shifting over b i until it performs a 

reduction that reduces the height of the parse stack (before pushing the new state onto 

the stack) to less than k. That last reduction is the freeing reduction of the initial shift. 

The net result of the parsing actions performed from the time the parser shifts over a 

given token until it performs the freeing reduction associated with that shift consists of 

popping some states off the parse stack, advancing over some input tokens, and then 

shifting over a nonterminal symbol. These facts can be exploited to avoid redundant 

parsing while testing potential repairs. 

The new technique for implementing the Graham-Haley-Joy algorithm relies on 

information recorded during earlier forward moves to avoid redundant parsing during the 

current forward move. Whenever a forward move is about to shift over a token of its 

test string that is to the right of any changes made to the original string, a check is made 

to see if any previous forward moves shifted over that token starting from the same 

state. If so, a record will have been kept of the net result of the shift and all subsequent 

actions up to and including the associated freeing reduction (if one was performed). 

Therefore, that result can be implemented directly without having to reparse any portion 

of the input. Three forms of results may have been recorded, namely that the parser 

1. shifts over the remaining characters of the test string, 

2. detects an error k tokens later, or 

3. pops k states off the parse stack, advances over n tokens of the test 

string, and shifts over the nonterminal symbol A. 

In either of the first two cases, the forward move is terminated. In the last case, the 

stack and the remaining input are modified as indicated and then the forward move is 

resumed. Consider the previous example again. The first forward move that shifts over 

the token if will record that the net effect of the shift and the subsequent actions is to 

pop one symbol off the parse stack, advance the input 6 tokens, and shift over the 

nonterminal symbol "unlabeled statement." (Note that the recorded result depends on 

the particular parser being used; for other parsers, other results would be recorded.) All 

subsequent forward moves that would otherwise have to reparse the if-statement can now 

simply implement the recorded result (recall that there is only one state that contains a 

shift over the token if). 

The information needed about the results of particular groups of parsing actions can 

be gathered without significantly slowing the parser. Whenever the parser shifts over a 

token in a test string that is to the right of all changes made to the string, an ordered 

triple is pushed onto an auxiliary stack. The form of the triple is (q, l, h), where q is the 

state of the parser just before shifting, l is the location of the token in the original input 

string, and h is the height of the parse stack after shifting. Whenever the parser 

performs a reduction that pops more than two states off the parse stack, the contents of 

the auxiliary stack are examined starting from the top of the stack. Let k be the height 

of the parse stack after the symbols have been removed, let n be the location of the 

current lookahead symbol in the original input string, and let A be the nonterminal 

symbol on the lhs of the rule used in the reduction. For each element (q, l, h) of the 

auxiliary stack such that h < k, record that whenever the parser shifts over the symbol 

at location l starting from the state q, the net result is to pop k - h states off the parse 

stack, advance the parse n - l tokens, and shift over A. Each such element is then 

popped off the auxiliary stack. Whenever the parser detects an error or shifts over the 

final token in the test string, the corresponding results are recorded for every element 
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that remains on the auxiliary stack, and then the stack is emptied. 

4.2 Applying Semantics to Repairs 

The main reason for applying semantic data to error recovery is to produce better error 

diagnoses. Given a set of potential recoveries, those recoveries that lead to semantically 

correct programs should normally be preferred over those that do not. Every error 

repair algorithm must have a method for choosing among possible repairs. That selection 

mechanism is the obvious point at which to apply semantic data. 

Levy's algorithm uses two different mechanisms for choosing a repair. The forward 

move phase of the algorithm rejects all repairs that involve more than a predefined 

number of changes to the input. After the forward move phase, some other mechanism 

is needed to choose among the remaining repairs. There seems little point in applying 

semantics to the forward move phase. The cost of performing semantic analysis during 

the myriad possible forward moves is too great, and the benefits of doing so are too 

small. Any repairs that would be weeded out because of semantic information can also 

be rejected later. Semantic checking could be applied just after the forward move phase. 

If any of the repaired strings are found to be semantically correct, those repairs that do 

not produce semantically correct strings can be rejected. The syntactic costs of the 

repairs could then be used to select a repair from among the remaining possibilities. If 

none of the repaired strings are semantically correct, the choice of a repair could be 

based on a function of the semantic and syntactic costs of each potential repair. 

Levy's algorithm is thus easily extended to use semantic data. However, minimal

distance repair algorithms such as Levy's are inherently slow. The order complexity of 

those algorithms is equivalent to the order complexity of general context-free parsing. In 

his paper, Levy suggests some heuristic limits which can be imposed to reduce the order 

complexity of his algorithm. If those limits are applied, the order complexity becomes 

linear. Even with those restrictions, however, the algorithm is too slow to be considered 

practical. 

The local recovery algorithms for LR parsers that were based on the Graham

Rhodes algorithm cannot easily be adapted to take advantage of semantic data. 

Semantic analysis cannot be done during the forward move because semantic actions that 

might critically affect the analysis may not have been executed. Furthermore, it cannot 

be done after the forward move, because the text following the detection point will 

already have been parsed. One way around this dilemma is to save copies of the tokens 

in the text parsed by the forward move. Semantics could then be applied to the selection 

of each repair. When selecting a repair, the text to the right of the detection point of 

that error could be reparsed and the semantic cost associated with the repair could be 

determined. After the repair is selected, the repaired text could be parsed so that 

semantic analysis could continue up to the next error. 

The difficulty of adding semantics to the Graham-Haley-Joy algorithm depends on 

the way in which the forward move was implemented. If the forward move consists of 

parsing each test string independently, it is easy to extend the algorithm to make use of 

semantics. During each forward move, the semantic actions and checks associated with 

each reduction performed can be executed. The semantic cost thus determined can then 

be used to in computing the cost of the repair. This is the technique used in the Pascal 

auditor created as a part of this work. 
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An implementation of the forward move that avoids redundant parsing makes it 

harder to compute the cost of a repair. However, it may reduce the time spent 

computing those costs. If any redundant parsing is to be avoided, it is necessary to know 

which semantic actions can alter the contents of the symbol table or other global 

semantic entities. If the text parsed during a forward move executes any of those 

actions, the mechanism for avoiding redundant parsing should cease to be used for the 

rest of the forward move. The results of a parse should not be recorded if any of such 

action was performed during the parse. Whenever a result of a parse is recorded, the 

semantic cost associated with that result should also be recorded. Whenever a reduction 

to a nonterminal symbol is recorded, the semantic value computed for that symbol 

should also be recorded. Thus, in those contexts that are not semantically sensitive, both 

redundant parsing and redundant semantic analysis can be avoided. 

The Graham-Haley-Joy algorithm is thus shown to be the most suitable basis for 

semantics-directed repairs. Levy's algorithm and the Mickunas-Modry algorithm are too 

slow to serve as a basis for a practical error repair algorithm. The Pennella-DeRemer 

and Druseikis-Ripley algorithms are both fast enough to be used for syntactic error 

recovery, but are not easily modified to take advantage of semantic data. The Graham

Haley-Joy algorithm is both fast enough to be practical and can easily be modified to 

make use of semantic data. 

4.3 Semantics for Semantics-directed Repairs. 

The analysis phase of a modern compiler consists mainly of performing a syntax-directed 

translation. The result of analyzing an input program is the same program expressed in 

another form. That form might be anything from a parse tree to absolute machine code. 

The transformation is effected by action routines associated with the syntactic constructs 

of the language. If the compiler's parser is produced from a grammar, each action 

routine is associated with a rule of the grammar. This section examines the 

characteristics the action routines must possess to support semantics-directed error 

recovery. The ways those routines are implemented is not discussed here; that topic is 

deferred until Chapter 5. 

The action routines can affect error recovery in two ways. If an action routine finds 

a semantic error that may be the result of a syntactic error, it can signal that the 

syntactic repair algorithm should be invoked. It can also provide information to the 

error repair algorithm about the semantic costs of potential repairs. 

Culik [Cul69] and Koster [Kos71] each proposed separating the checks for semantic 

errors from the rest of the action routines. Thus, each action routine is split into two 

parts: a semantic check and a semantic action. The semantic checks are predicates based 

on the attributes of the symbols named in the associated rules. During semantic analysis, 

the semantic check is evaluated before executing the corresponding semantic action. The 

check returns false if a semantic error is detected. As was noted in Chapter 3, Schmauch 

[Sch82] uses this scheme as a basis for semantics-directed repairs. Whenever a repair is 

evaluated, it is assigned a cost based on the number of tokens shifted before a semantic 

error is detected. Schmauch's algorithm makes no provision for ·invoking the syntactic 

error recovery algorithm in the event of a semantic error. The syntactic recovery 

algorithm could simply be invoked whenever a semantic error is detected. However, for 

many types of semantic errors there is no reason to suspect that the error is the result of 

a syntactic mistake. For example, it would be wasteful to invoke the syntactic repair 

algorithm whenever a semantic check detects an undeclared identifier, since there is little 
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hope that such an error could be corrected by a syntactic repair. 

The scheme used in this work for providing semantic data to the parser and the 

error recovery algorithm is based on an extended notion of semantic checks. Those 

extended semantic checks are called guards. Each semantic action can be preceded by a 

guard. A guard sets two global variables: a flag indicating whether the syntactic repair 

algorithm should be invoked, and a integer indicating the cost of performing the 

associated semantic action. The compiler writer decides which semantic errors will cause 

the flag to be set. Thus, errors such as undeclared identifiers need not cause the 

syntactic repair algorithm to be invoked. A guard must set the cost to zero if no 

semantic error is found; otherwise, it must be assigned a positive value. 

The semantic actions must be able to cope with semantic errors. Error messages for 

semantic errors are issued by the semantic actions. A semantic action will be invoked 

even if the preceding guard signals that there is a semantic error. The syntactic repair 

algorithm executes the semantic actions while testing potential repairs (after setting a 

flag that blocks error reporting). If no syntactic repair that fixes the semantic error is 

found, the semantic action is invoked to issue an error message and generate an 

appropriate result. 

It is sometimes possible to produce the correct semantic result in the presence of 

semantic errors. For example, the type of a relational expression is Boolean regardless of 

the types of its operands. Therefore, the semantic action for a relational expression can 

return a value indicating that the expression's type is Boolean even if the types of the 

expression's operands clash. This particular example has led to obviously better repairs 

in some instances. It is, of course, usually impossible to produce correct semantic results 

in the presence of semantic errors. In those situations, the semantic action should return 

a special error value as its result. The error value could be propagated by later rules to 

prevent detection of spurious errors. 

The scheme outlined above was used in the Pascal auditor. That experience has 

shown that the scheme could be used as a basis for semantics-directed error recovery for 

a real programming language. However, it also exposed a basic flaw of the scheme, 

namely that the time required to analyze correct programs is significantly increased over 

the time required by conventional compilers. 

One cause of that increase is that the guards and semantic actions must often check 

the same conditions. There is no communication between the guards and the semantic 

actions. The guards check for semantic errors and decide how they should be handled. 

However, it is the semantic actions that must produce the error messages. To know 

whether a message should be issued, the semantic action must usually perform the same 

checks as the guard. Programming languages with many data types and strong type 

checking require elaborate tests for semantic correctness. Examination of the run-time 

actions of the Pascal auditor has shown that those checks usually had to be performed 

twice. While the execution time of each semantic check is small, the time spent 

performing the redundant checks is a significant fraction of the total time required to 

analyze correct programs. 

Another source of the implementation's inefficiency is that a single copy of the 

guards and actions is used by both the parser and the error recovery algorithm. 

Therefore, evaluating a guard or executing an action always involves a subroutine call. 

The Y ace parser generator [Joh78] is able to avoid this overhead by expanding the action 

routines inline within the parser itself. The overhead could have been avoided in the 

implementation by expanding the guards and actions inline within both the parser and 

the error recovery algorithm. The only objection to that expansion is the additional code 
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space required. The total size of the guard and action routines is just under 11,000 

bytes. Making duplicate copies of those routines would be undesirable for a small 

machine, but it would be acceptable for most paging machines (particularly since the 

copy created for the error recovery algorithm will not have to be loaded into memory 

unless an error is detected). 

The semantic routines can be organized so that no redundant checks are performed 

for correct programs. In the previous scheme, the guards always produced both a flag 

value and a cost. The flag value serves only to trigger the repair algorithm; while the 

repair algorithm is executing, the flag value is not inspected. The cost, on the other 

hand, is never examined during normal parsing. Thus, the flag value and the cost are 

never needed at the same time. This observation suggests that it would be better to split 

the action routines into separate versions for normal parsing and for error recovery than 

to split them into semantic checks and semantic guards. 

The new scheme requires three versions of each action routine. The first version is 

used during normal parsing, the second is used to test potential repairs, and the third is 

used to get semantic analysis back on track after recovering from an error. The versions 

of an action routine are similar except for the way in which they treat semantic errors. 

When the first version detects an error, it either sets the flag that signals that the 

syntactic repair algorithm should be invoked and returns, or it issues an error message 

and continues executing. When the second version detects an error, it assigns a cost to 

that error and continues; it never issues an error message. When the third version 

detects an error, it issues an error message and continues executing; it does not affect 

either the flag or the cost. 

Since the new scheme requires different versions of each action routine for each 

function that those routines serve, each occurrence of an action routine should be 

expanded inline. The objections to inline expansion of the action routines under the 

previous scheme are exacerbated under the new scheme, since now three copies of each 

routine are needed. There are, however, reasons to believe that the space requirements 

will not increase as much as might at first be expected. Under the previous scheme, the 

codes for the guards were usually similar to the codes for the semantic actions but 

different enough that they could not be shared. Under the new scheme, the codes for the 

various versions of the action routines will usually be identical except for the portions for 

handling errors. Thus, there should be more chances for sharing code. 
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A Model of Compilation for 
Semantics-directed Error Recovery 

Semantics-directed error recovery requires unusually tight linkage between parsing and 

semantic analysis. Many compilers defer semantic analysis until after parsing has been 

completed. Even one-pass compilers commonly delay semantic checking for each 

statement until after the entire statement has been parsed. Delaying semantic checking 

can result in inferior recoveries. Consider, for example, the statement 

writeln(x. y) 

where x and y are real variables. The apparent error is that a period has been used 

where a comma was intended. The semantic routines could detect this error before the 

parser shifts over the period. If that happens, a semantics-directed error recovery 

algorithm would most likely replace the period with a comma. However, the statement is 

syntactically correct since z. y is a well-formed record selection. Therefore, if semantic 

checking is deferred, the error will not be discovered until after the statement has been 

parsed. By that time, only a backtracking error recovery algorithm could find the best 

recovery. The backtracking error recovery algorithms that have been proposed thus far 

are too slow to be practical. Therefore, it must be assumed that deferring semantic 

checking would lead to inferior recoveries. 

Semantics-directed error recovery also requires the ability to undo the effects of 

semantic operations. When testing a potential recovery, the error recovery algorithm 

must evaluate the semantics associated with that recovery to determine its semantic cost. 

If the recovery is rejected, the semantic operations done while testing it must not affect 

later stages of compilation. Semantic operations performed by conventional compilers 

are not easily reversed. The effects of a executing a semantic action can include altering 

global variables, updating attributes in the semantic stack, and inserting and deleting 

symbol table entries. Since semantic operations can cause so many kinds of changes, a 

general history mechanism would be needed to make it possible to reverse their effects. 

While such a mechanism could be implemented, the associated time and space overheads 

are daunting. Therefore, a more restricted compiler organization is needed. 

This chapter explores some ways of organizing a compiler to support semantics

directed error recovery. First, a paradigm of reversible semantics based on attribute 

grammars is given. Restricted forms of attribute grammars that could support 

semantics-directed error recovery are considered. The chapter concludes with the 

presentation of a model of compilation that can support semantics-directed error 

recovery and yet is efficient enough to be used as a basis for practical compilers. 

24 
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5.1 Attribute Grammars 

Attribute grammars are currently the most popular model of the analysis phase of 

compilation. Analyzing a program according to an attribute grammar consists of 

generating an evaluation for it. Producing an evaluation involves two distinct steps. 

First, the program's parse tree must be constructed. Then, the attributes of the parse 

tree's nodes are evaluated. Every attribute of every node in the parse tree is initially 

considered to be unknown. For each attribute of a node, the associated dependency 

vector determines which other attributes must be assigned values before it can be 

evaluated. So long as any attributes have not been assigned a value, an attribute that 

can be evaluated is found, the associated semantic function is evaluated, and the 

resulting value is assigned to the attribute. This process continues until either every 

attribute has been assigned a value, or no further attributes can be evaluated because of 

circular dependencies. 

The attribute grammars used by compiler generation systems usually permit 

terminal symbols to possess "inherent attributes." The values of the inherent attributes 

are set by the lexical analyzer. For example, the inherent attribute of an identifier might 

be the string representing that identifier, while the inherent attribute of an integer 

constant might be its value. Inherent attributes are theoretically unnecessary. The 

inherent attributes of a symbol could be replaced by synthesized attributes if the 

underlying grammar for the language were extended down to the character level. The 

additional time required to parse according to such a grammar renders that possibility 

impractical. 

Attribute grammars represent a more restrictive model of compilation than is 

embodied by most compilers. The only semantic operation is to evaluate attributes. 

Further, once an attribute has been assigned a value, its value cannot be changed. 

Finally, there are no global data structures. Those restrictions make it easy to reverse 

the effects of semantic operations. 

One concrete implementation of reversible semantic analysis for attribute grammars 

involves pairing each attribute with a pointer variable. Attribute evaluation requires a 

means of indicating which attributes have already been assigned values. In this 

implementation, the pointer variables indicate whether the associated attributes have 

been evaluated. Initially, the pointer variables are all set to null. Any attribute whose 

associated pointer variable is null is considered to be unevaluated. When an attribute is 

assigned a value, its pointer variable is set to the address of the pointer variable paired 

with the last attribute that was previously assigned a value. A special flag value must be 

assigned to the pointer variable associated with the first attribute to be evaluated. Thus, 

the pointers paired with evaluated attributes form a singly linked list ordered in the 

reverse of the order of evaluation. The effects of all semantic operations done after a 

given time can be undone simply by following the chain of pointer variables back to last 

one that had been set at that time, resetting each pointer variable encountered along the 

way to null. 

5.2 LL- and LR-attributed Grammars 

Although general attribute grammars allow the effects of semantic operations to be 

reversed, they do not provide a suitable basis for semantics-directed error recovery. For 

general attribute grammars, the entire parse tree of a program must be constructed 

before any of that tree's attributes can be evaluated. Therefore, no semantic checking 
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can be done before parsing is completed. Thus, it is impossible to use semantic 

information to recover from syntax errorso Some forms of attribute grammars that do 

permit semantic analysis to be linked with parsing have been proposed. Two of the most 

powerful forms, the LL-attributed grammars [LRS7 4] and the LR-attributed grammars 

[Wat77], are considered in this section. 

For attribute grammars, performing semantic analysis while parsing means that 

whenever the parser advances over an input token, all of that token's attributes must be 

evaluated. Also, whenever the parser reaches the end of the rhs of a rule in the 

derivation produced by the parser, the attributes of the symbol on the lhs of that rule 

must be evaluated. Evaluating synthesized attributes while parsing poses no problem. 

By the time the parser reaches the end of the rhs of a rule X 0 - X 1 ••• Xn that is in the 

derivation produced by the parser, the attributes of the symbols on the rhs of the rule 

must all have been evaluated. Therefore, any synthesized attributes of the symbol on the 

lhs of the rule can be evaluated. Thus, only inherited attributes require special handling. 

Lewis, Rosenkrantz, and Stearns [LRS7 4] show that for an L-attributed grammar 

the attributes of a parse tree can be evaluated in a single left-to-right top-down traversal 

of the tree. Since such a traversal corresponds to the order in which the nodes are 

encountered during a left-to-right top-down parse, an L-attributed grammar permits 

semantic analysis while parsing if the underlying grammar is LL(k). An L-attributed 

grammar whose underlying context-free grammar is LL(k) for some k is an LL-attributed 

grammaro An automaton for evaluating LL-attributed grammars while parsing is 

described in [LRS74]. 

Methods for implementing semantic evaluation while parsing for use with bottom-up 

parsers have also been proposed [LRS74, Wat77, Poh83]. The method described here is 

based on the method proposed by Watt [Wat77]. Watt's method is defined, not for 

attribute grammars, but for a related class of grammars called affix grammars [Kos71]. 

The variant described below is an adaptation of Watt's method for L-attributed 

grammars. Given an L-attributed grammar AG, a total order is defined over the 

inherited attributes of each symbol. The values of the currently relevant inherited 

attributes are maintained in a global stack called the inherited attribute stack. 

Whenever a rule X 0 - X 1 ... Xn is used in a reduction, the values of the inherited 

attributes of X 0 will appear in order at the top of the inherited attribute stack. Let G 

be the underlying context-free grammar of AG. A new grammar, called the head 

grammar, is created from G. The head grammar contains new symbols and rules that 

are used to manipulate the inherited attribute stack. A control rule is a >.-rule whose 

associated action routine modifies the inherited attribute stack. The nonterminal symbol 

on the lhs of a control rule is a control symbol. The control symbols must be symbols 

that do not appear in the vocabulary of G. Control symbols are used to evaluate 

inherited attributes and to maintain those values in the proper order on the inherited 

attribute stack. Let X 0 - X 1 .•• Xn be a rule of G. The corresponding rule of the head 

grammar is created by adding control symbols to the immediate left and right of those 

symbols that require modification of the inherited attribute stack. For each X 1" 

1 < k < n, the semantic functions and dependency vectors used to compute the values 

of the inherited attributes of X~e are examined. If the compiler generator can determine 

that the values of the inherited attributes of X~e must equal the values already at the top 

of the inherited attribute stack, no control productions are added around X~e. 

Otherwise, X~e is surrounded by a pair of control symbols. The action routine associated 

with the control symbol to the left of X~e pushes the values of those inherited attributes 

onto the inherited attribute stack. The action routine associated with the control symbol 

to the right of the symbol pops those values off the stack. Note that different orderings 



27 

of the inherited attributes may result in different head grammars. 

An L-attributed grammar whose head grammar is LR( k) for some ordering of the 

inherited attributes is an LR{k)-attributed grammar. An L-attributed grammar that is 

an LR(k)-attributed grammar for some k is an LR-attributed grammar. It is difficult 

characterize the LR(k)-attributed grammars. If the underlying context-free grammar G 

of an attribute grammar is not LR(k), then its head grammar will not be LR(k). 

However, the control symbols and control productions that are added to the head 

grammar may cause it to fail to be LR(k) even when G is LR(k). Also, the quality of the 

algorithm used to produce the head grammar affects which L-attributed grammars are 

LR(k)-attributed grammars. For example, a variety of tests could be used to determine 

whether the inherited attribute stack must be modified. A compiler generator that uses 

a powerful test will produce LR(k) head grammars more often than one that uses a 

weaker test. 

Attribute grammars for programming languages normally use inherited attributes to 

move information about the environment in which symbols occur down to the instances 

of those symbols in the parse tree. Thus, for most parts of the context-free grammar of 

a programming language, the head grammar will be the same as the original grammar. 

Consider, for example, the piece of an attribute grammar for expressions shown in 

Figure 5.1. The inherited attribute ENV is an environment, the synthesized attribute 

DEF is a definition, and the inherent attribute TAG is a string. An environment is 

assumed to be a list of definitions for symbols. The function lookup takes a string and 

an environment as its arguments. If the string is associated with a definition, that 

definition is returned; otherwise, an error value is returned. 'Whenever a reduction is 

performed according to one of the rules given above, the topmost value on the inherited 

attribute stack will be the current environment value. A compiler generator should be 

able to determine that the stack need not be modified for any of the rules listed, since 

the semantic functions assigning values to the ENV attribute are all copy operations. 

Therefore, those rules should be copied into the head grammar without change. 

Both LL- and LR-attributed grammars are well suited for semantics-directed error 

recovery. Because the attributes are evaluated in a single pass, there is no need to store 

the parse tree. For LL-attributed grammars, the attribute values can be maintained in a 

separate semantic stack. Whenever the error recovery routine is entered, a copy can be 

made of the contents of the semantic stack. The effects of semantic operations done 

while testing a potential recovery can be undone by copying back the original contents of 

the semantic stack. For LR-attributed grammars, the values of the inherited attributes 

of symbols that have not yet been shifted are stored in the inherited attribute stack. 

The synthesized and inherited attributes of the symbols that have been shifted can be 

stored in a separate semantic stack. The semantic stack for LR-attributed grammars 

would be maintained in parallel with the parse stack. As in the case of LL-attributed 

grammars, the values of the inherited attribute stack and the semantic stack could be 

copied and then restored as needed. 

Unlike general attribute grammars, LL- and LR-attributed grammars make 

semantic information available when needed to evaluate the semantic costs of potential 

recoveries provided that the language being analyzed requires symbols to be declared 

before they are used. Languages with that property are called one-pass languages. Few 

languages are strictly one-pass languages. However, many languages, including Fortran 

[ANS78], Cobol [ANS74], Pascal [ANS83], and C [KR78], are nearly one-pass languages, 

i.e., they are one-pass except with respect to a few constructs such as labels. Semantics

directed error recovery for those semantic features of a nearly one-pass language that are 

truly one-pass can be supported by LL- and LR-attributed grammars. 
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expr0 - expr1 + term1 

{ 

} 

expr1 .ENV = expr0 .ENV; 
term1 .ENV = expr0 .ENV; 

expr0 - term1 
{ 

term1 .ENV = expr0 .ENV; 

} 

term0 - term1 * factor1 

{ 

} 

term1 .ENV = term0 .ENV; 
factor1 .ENV = term0 .ENV; 

term0 - factor1 

{ 
factor1 • ENV = term0 . ENV; 

} 

factor0 - identifier1 

{ 
factor0 .DEF = lookup(identifier1 . TAG, factor0 . ENV); 

} 

factor0 - ( expr1 ) 

{ 
expr1 • ENV = factor0 • ENV; , 

} 

Figure 5.1 A sample LR-attributed grammar 

5.3 A Practical Organization that Supports Semantics-directed 
Error Recovery 

Despite the fact that LL- and LR-attributed grammars provide workable models of 

compilation for semantics-directed error recovery, the recovery techniques implemented 

as part of this work are based on an alternative model. The main reason for rejecting 
LL- and LR-attributed grammars was efficiency. Although much effort has been devoted 
to developing compiler generation systems based on attribute grammars, none of those 
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systems produce implementations that are acceptably fast and only the most restrictive 

systems are acceptable in terms of storage requirements. 

Another reason for rejecting LL- and LR-attributed grammars is that they are hard 

to use. It is pointed out in [LRS7 4] that it is difficult to write LL( k) grammars for real 

programming languages. While it is relatively easy to write LR(k) grammars for 

programming languages, the restrictions on semantic operations make it difficult to write 

LR-attributed grammars. The difficulty of writing attribute grammars for programming 

languages is possibly the main reason attribute grammar based compiler generators are 

not widely used. Table-driven parsing techniques gained acceptance before they began to 

match the efficiency of hand-coded parsers because it is easier write a grammar for a 

language than it is to hand-code a parser. Attribute grammars, on the other hand, are 

often more difficult to write than equivalent hand-coded semantic routines. 

A major cause of the inefficiency of compilers based on LL- and LR-attributed 

grammars is that current implementations of attribute grammars do not model the 

functions of symbol tables efficiently. Symbol tables are normally designed to allow rapid 

insertion, deletion, and look up of symbols. Attribute grammars, however, do not permit 

the values of attributes to change once they have been set. Therefore, it is difficult to 

emulate a dynamic structure such as a symbol table without incurring large space or 

time overheads. The data structure most often )lsed to implement symbol tables for 

attribute grammars is the inverted tree. An inverted tree is a directed tree in which the 

edges go from the leaves to the root. Inverted trees support rapid insertion and deletion 

of symbols, and require no more space than normal symbol tables. However, the average 

time required to look up a symbol in an inverted tree is proportional to the number of 

currently visible table entries. Therefore, compilers that use inverted trees to represent 

symbol tables are too slow for production use. 

An obvious solution to the problem of efficiently modeling the functions of a symbol 

table is to add a conventional symbol table to an attribute grammar. That is the 

approach taken in this work. The semantic functions of the attribute grammar are 

extended to include semantic actions that use and modify the symbol table. The symbol 

table must be implemented in a way that permits symbol table operations to be undone. 

Two symbol table organizations that support reversible semantics are discussed in 

Section 5.4. 

Once the decision was made to use a symbol table, it appeared that there would be 

no need for inherited attributes. The implementation of the Pascal auditor uses only 

synthesized attributes. Hence, it was possible to use an LALR(l) parser generator to 

produce the parser and semantic analyzer for the Pascal auditor. Since LALR( 1) parser 

fncall - fnpart '), 

fnpart - fnhead expr 

fnhead - fnname '(' fnpart ', 

fnname - name 

name - IDENTIFIER 

Figure 5.2 Grammar for function calls without using inherited attributes 
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fncall -+ name '(' expr-list ')' 

expr-list -+ expr-list ',' expr expr 

name -+ IDENTIFIER 

Figure 5.3 Grammar for function calls using inherited attributes 

generators are more common than attribute grammar based compiler generators, the 

techniques used in the Pascal auditor should be more broadly applicable than techniques 

based on LR-attributed grammars. However, avoiding inherited attributes has its 

drawbacks. Some of the rules of the grammar had to be factored in unusual ways to 

permit semantic checking to be done while parsing. If the implementation had 

incorporated both a symbol table and inherited attributes, a simpler grammar could have 

been used. For example, the grammar for function calls used in the Pascal auditor is 

shown in Figure 5.2. The rules are factored so that type information obtained from the 

symbol table entry for the function name is available to the semantic routines for 

parameters. If the Pascal auditor had been implemented using an LR-attributed 

grammar, the more natural grammar for function calls shown in Figure 5.3 could have 

been used instead. Type information obtained from the function name could be passed 

to the semantic routines for parameters through inherited attributes. 

The model organization of a compiler used in this work consists of an LALR(l) 

parser, a symbol table, and synthesized attributes. The values of the synthesized 

attributes are stored in a semantic stack which is associated with the parse stack. The 

ability to reverse the effects of semantic operations on the parse stack is implemented by 

copying and restoring the semantic stack as necessary. This model is not far different 

from the organization of a conventional one-pass bottom-up compiler. The major 

differences are that semantic actions are not allowed to reference or modify global 

variables except through symbol table operations, and that attributes cannot be modified 

once set. 

The expressive power of this model of compilation is less than that of the LR

attributed grammars. Therefore, the set of languages for which semantic analysis can be 

linked with parsing under this model of compilation is a subset of the languages for 

which semantic analysis can be linked with parsing using LR-attributed grammars. 

Hence, this model of compilation is satisfactory only for languages that are nearly one

pass languages. 

5.4 Symbol Tables 

Special symbol table capabilities are needed to support semantics-directed error recovery. 

If any changes are made to the symbol table while testing a potential recovery, it must 

be possible to undo those changes. The ability to undo symbol table operations that 

were done during normal compilation can also prove useful. This section describes two 

symbol table organizations that allow symbol table operations to be undone. The first 

organization permits only those operations done while testing recoveries to be undone. 

The second allows the symbol table to be backed up to any previous state. 
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Most modern programming languages are block-structured. In a block-structured 

language, scopes of declarations are tied to syntactic constructs called blocks. The blocks 

are strictly nested. Four symbol table operations are needed to be able to compile a 

strictly block-structured language, namely 

1. look up the current definition of a symbol, 

2. insert a new definition for a symbol at the current nesting level, , 
3. increase the current nesting level, and 

4. delete all definitions at the current nesting level and then reduce the 

nesting level by one. 

Almost all programming languages include a few features that violate the rules of block

structuring. Additional operations may be needed to implement those features. 

One way of implementing symbol tables so that the effects of symbol table 

operations can be undone involves using two tables. The first symbol table is used 

during normal compilation. No semantic operations done while testing a recovery are 

allowed to affect the first table. During a test, the second table is used as a filter through 

which the effects of symbol table operations are implemented. Each entry in the second 

table contains a mark bit that indicates if the entry has been deleted. It is assumed that 

a special value called undefined is returned when an attempt is made to look up an 

undefined symbol. A global flag indicates when the compiler is testing a possible 

recovery. During normal compilation, the first table is used for all operations. Before 

testing a recovery, the global flag is turned on and the second table is cleared. Any 

auxiliary variables used by the symbol table, such as the variable that records the 

current nesting level, should be copied so that they can be restored at the completion of 

the test. 

The routine to look up definitions of symbols uses the first table during normal 

parsing. While testing a recovery, the routine first looks for a symbol in the second 

table. If the second table does not yet contain a copy of the symbol, the definition is 

obtained from the first table. The algorithm shown in Figure 5.4 implements the look up 

routine. Lookup places copies of definitions obtained from the first table into the second 

table instead of simply setting a pointer to the original definition because the semantic 

routines may modify the definition. If the compiler writer knows that a definition cannot 

be changed by later semantic actions, the second table can share the definition with the 

first table. 

Inserting definitions and increasing the nesting level are both easily handled. If a 

recovery is being tested, the definition is inserted into the second table; otherwise it is 

inserted into the first. Increasing the nesting level does not require special handling; any 

semantic action can increase the nesting level. 

The operation consisting of deleting all symbols at the current level and reducing 

the nesting level is called popping the scope. Popping the scope while testing a recovery 

poses some hard problems. Entries in the first table cannot simply be deleted since they 

will have to be restored at the end of the test. They could be unlinked from the table 

and yet saved for later restoration. However, that involves complicated pointer 

manipulations. One solution is to use the second table to mark those symbols that are no 

longer defined after popping the scope. Let entry be a function that takes an integer £ 

and a symbol s as its arguments. Entry returns the highest level entry among the set of 

entries for s that were entered at a nesting level less than or equal to e. If the set of 
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function Lookup(s: symbol): definition; 

begin 

end 

if' testing a recovery then 
begin 

end 

if' the second table contains an entry for s then 
if' that entry is marked as -deleted then 

return undefined; 
else 

else 
begin 

return the definition of s from the second table; 

if' the first table contains an entry for s then 
begin 

end 

end 
else 

make a copy of the definition of sin the first table; 

enter that definition into the second table; 
return the copied definition 

return undefined; 

else if' the first table contains an entru for s then 
return the definition of s from the first table 

else 
return undefined 

Figure 5.4 The look up algorithm 

entries is empty, entry returns undefined. Then popping the scope can be implemented 

by the procedure shown in Figure 5.5. 

The scheme described above makes restoring the symbol table after testing a 

recovery trivial. No symbol table operations performed during a test make any changes 

to the first table. After testing a recovery, the global Hag signaling that a test is being 

performed is turned off, all storage allocated to the entries in the second table is freed, 

and the global variables whose values were saved at the start of the test are reset to their 

previous values. 

This symbol table organization requires some additional restrictions on semantic 

operations. Care must be taken not to rely on the addresses of definitions. If a semantic 

routine depends on the locations of definitions returned by the look up routine, there is a 

chance the routine will not work correctly while testing a recovery. If a definition must 

be copied by the look up routine, its address during normal compilation will not be the 

same as its address during testing. Also, there may be problems with shared data 

structures. The look up routine may make separate copies of a structure shared by two 

or more definitions. Therefore, if the semantic routines rely on changes to the structure 

affecting every definition that accesses it, they may fail while testing a potential recovery. 

The efficiency of this table organization depends on the data structures used to 

represent the tables. The routine for popping the scope is particularly sensitive. If the 

tables are implemented using hashing with chaining where the chains can hold entries for 



procedure PopScope; 
var l, n: integer; 
begin 

end 

if testing a repair then 
begin 

end 
else 

l - the current nesting level; 
n - the nesting level when the test began; 

delete all entries in the second table 
whose nesting level is l; 
if l < n then 

for each entry e in the first table 
whose nesting level is l do 

begin , 

end 

s - the symbol defined by e; 
if there is no entry for s in the second table then 

begin 

end 

e1- entry(l, s); 
if e1 = undefined then 
begin 

end 
else 

make an entry for s in the second 
table at the lowest nesting lwei; 
mark that entry as having been deleted 

insert a copy of e1 in the second 
table at the same nesting level as e1 

delete all entries in the first table 
whose nesting level is l; 

the current nesting level - l- 1 

Figure 5.5 The algorithm for popping the scope 
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different identifiers, then when a symbol is deleted, it will sometimes be necessary to scan 

an entire chain to discover that there are no lower level definitions of that symbol. A 

better representation is to use a name table with separate definition chains for each 

name. That representation makes it possible to determine if there are any lower level 

definitions of a given symbol in time proportional to the number of definitions. If the 

routines that copy entries from the first table to the second also create pointers back to 

the original entry, that condition could be checked in constant time. 

The symbol table organization described above permits the effects of symbol table 

operations done during a test of a potential recovery to be undone. However, it does not 

permit operations done during normal compilation to be undone. An alternative 

organization that provides that capability has been developed. The alternative 



34 

organization was intended for use with a backtracking error recovery algorithm. That 

algorithm was abandoned because it was too slow. However, the symbol table 

organization proved attractive in its own right and was used in the implementation of 

the Pascal auditor. Other reasons for wanting to be able to reverse the effects of symbol 

table operations done during normal compilation are discussed in Sections 6.5 and 7 .5. 

The alternative organization uses a specialized history mechanism. A counter called 

the timec/ock is used to keep track of the sequence of symbol table operations. The 

timeclock is incremented whenever the symbol table's contents are altered. It is also 

incremented whenever the nesting level is increased. Each symbol table entry contains 

two special fields: the entered field and the deleted field. The two fields provide the 

information needed to back up the symbol table. The entered field is assigned the value 

of the timeclock at the time the entry is inserted. The deleted field is initially set to 

zero. Whenever an entry is deleted, the routine that performs the deletion checks if its 

deleted field's value is still zero. If so, the deleted field is assigned the current value of 
the timeclock. The reason the deleted field might not be zero is that the entry may have 

been deleted and then replaced. Deleted entries are not destroyed; they are placed on a 

list of deleted entries. 

This symbol table organization requires little that is unusual from the routines 

implementing symbol table operations. The look up routine does nothing beyond its 

normal function. The timeclock must be incremented whenever the nesting level is 

increased. Whenever an entry is inserted, the timeclock must be increased and its value 

must be recorded in the entry's entered field. Popping the stack is a bit more involved. 

First, the timeclock is incremented. Then each entry at the current nesting level is 

removed from the symbol table and placed on the deleted entries list. If an entry's 

deleted field is zero, that field is assigned the current value of the timeclock. The entries 

on the deleted entries list are not copies; they are the original entries in their original 

locations. 

The space requirements of this organization are greater than normal. The extra 

fields needed for each table entry will add a significant fraction to the size of the symbol 

table. The fact that symbol table entries are not deallocated when they are deleted also 

adds to its space requirements. However, there are many production compilers that also 

never delete symbol table entries. Multi-pass compilers seldom delete any symbol table 

entries until after the analysis phase of compilation is completed. Also, some compilers 

do not delete symbol table entries until after completing code generation so that they can 

produce memory maps for all named objects. 

If the error recovery algorithm is to make use of the ability to undo symbol table 

operations done during normal compilation, it must have a way of matching 

configurations of the parser with configurations of the symbol table. Assume that the 

error recovery algorithm does backtracking. If the parse is backed up to an earlier 

configuration, the symbol table should be backed up to the configuration it had at the 

time the parser first entered that configuration. If the symbol table is not backed up to 

the proper configuration, further semantic analysis could result in spurious errors being 

indicated. One way of linking configurations of the symbol table and configurations of 

the parse stack is to record the timeclock and the nesting level each time the parser 

shifts over a symbol. The recorded values of the the timeclock are called the timestamps 

of the configurations. Given a timestamp and a nesting level, the symbol table can be 

backed up to the corresponding configuration. 

The history mechanism makes it possible to back up the configuration of the symbol 

table either temporarily or permanently. A semantics-directed error recovery algorithm 
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that performs backtracking needs the ability to temporarily back up the table to be able 

to test possible recoveries. Once a recovery is selected, it permanently backs up the 

symbol table and then implements the recovery. 

Temporarily backing up the symbol table involves two routines: one to back it up, 

and one to restore it. The routine to back up the symbol table takes two arguments, the 

timestamp t and the nesting level l for the configuration to be restored. The text of the 

back up routine is shown in Figure 5.6. 

procedure Backup(t, l: integer); 
begin 

end 

SavedTimeClock +- TimeClock; 
SavedNestingLevel +- NestingLevel; 
NestingLevel +- l; 

Inactive +- nil; 
for each entry e in the symbol table such that e.entered > t do 

begin 

end; 

remove e from the symbol table; 
append e to Inactive 

for each entry e in Deleted such that e.entered < t and e.deleted > t do 

begin 
remove e from Deleted; 
place e back in the symbol table 

end 

Figure 5.6 The back up routine 

The routine references some global variables. TimeClock is the name of the timeclock. 

NestingLevel is the variable containing the nesting level. SavedTimeClock and 

SavedNestingLevel are used to save the values of the timeclock and nesting level so that 

they can be restored later. Inactive is a global list of entries. It holds all entries dumped 

from the symbol table. Deleted is the deleted entries list. Note that the timeclock is not 

set to t. 
The routine shown in Figure 5.7 restores the symbol table. The reason Backup did 

not reset the timeclock can now be explained. The symbol table entries added after 

backing up the table can be identified because their entered fields are greater than the 

old timeclock. Similarly, the entries that were deleted after backing up the table can be 

identified because their deleted fields are greater than the old timeclock. 

Permanently backing up the symbol table is a comparatively simple operation. The 

algorithm for permanently backing up the symbol table is shown in Figure 5.8. 

This symbol table organization requires that semantic operations be prohibited from 

modifying definitions obtained from the symbol table. Since copies of definitions are not 

made while testing recoveries, as was the case with the preceding symbol table 

organization, changes to definitions made while testing recoveries would not be undone 

after the test is completed. One benefit of not making copies is that the semantic 
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proeed ure Restore; 
begin 

end 

for each entry e in the symbol table such that 

e.entered > SavedTimeClock do 
begin 

end; 

remove e from the symbol table; 
free the storage allocated to e 

for each entry e in Deleted such that e.entered > SavedTimeClock do 

begin 
remove e from Deleted; 
free the storage allocated to e 

end; 

for each entry e in the symbol table such that e.deleted =f: 0 do 

begin 

end; 

remove e from the symbol table; 
append e to Deleted 

for each entry e in Deleted such that e.deleted > SavedTimeClock do 

begin 
e.deleted - 0; 
remove e from Deleted; 
place e back in the symbol table 

end; 

for each entry e in Inactive do 
begin 

remove e from Inactive; 
place e back in the symbol table 

end; 

TimeClock - SavedTimeClock; 
NestingLevel - SavedNestingLevel; 

Figure 5.7 The restore routine 

routines can rely on the definitions always being at the same addresses. That consistency 

is exploited in the type equivalence routines of the Pascal auditor. 

The two symbol table organizations described above exhibit very different 

characteristics. The first organization adds little to the cost of symbol table operations 

performed during normal compilation. The only added cost is the time to test the global 

flag indicating that the compiler is not testing a recovery. The costs of performing 

symbol table operations while testing a recovery, however, are high. Further, the only 

space overhead of the scheme during normal compilation is the space required for the flag 

bit. While testing a recovery, extra space will be needed for the copies of the entries. 



• 
procedure Reset(t, l); 
begin 

end 

TimeCiock - t; 
NestingLevel - l; 

for each entry e in the symbol table such that e.entered > t do 

begin 

end; 

remove e from the symbol table; 

free the storage assigned to e 

for each entry e in Deleted such that e.entered > t do 

begin 
remove e from Deleted; 
free the storage assigned to e 

end; 

for each entry e in Deleted such that e.deleted < t do 

begin 
e.deleted - 0; 
remove e from Deleted; 
place e back in the symbol tab 

end 

Figure 5.8 The reset routine 
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The history-based organization suffers the same time and space overheads during normal 

compilation as it does while testing a recovery. The overheads consist of maintaining the 

entered and deleted fields of the entries and maintaining the deleted entry list. 

Experience with the Pascal auditor has shown that the time spent backing up and 

restoring the symbol table before and after each test is small. In practice, testing a 

recovery usually does not involve making any changes to the symbol table, and so there 

is no need to restore the table. 

The choice between the two organizations is simple so long as the ability to back up 

the symbol table is used solely to implement semantics-directed recovery. If the recovery 

algorithm uses backtracking, the history-based organization must be used. If it does not 

backtrack, the costs of using the history-based organization during normal compilation 

give the edge to the simpler organization. However, there can be other reasons for using 

the history-based organization. Section 6.5 shows how that organization could be used to 

implement a limited backtracking capability. Section 7.5 shows its advantages in 

implementing panic mode recoveries. The compiler writer must decide if those benefits 

outweigh the costs. 

The two symbol table organizations described above are representative of many 

possible ways of implementing a symbol table suited for semantics-directed error 

recovery. Symbol table organizations that permit undoing symbol table operations done 

during normal compilation appear to require maintaining some data that is not needed 

for normal compilation. The time spent collecting that data will add to the compilation 

time of programs that are free of errors. Organizations that permit only operations done 
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while testing potential recoveries to be' undone are less flexible, but can be implemented 

with little or no impact on the time required to compile error free programs. 
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Erroneous Reductions 

Errors often are not detected until after the parser has done some reductions based on 

the erroneous input. Consider the erroneous statement 

X= 0.0 

The apparent error is that the symbol '=' appears in place of the symbol ':=' Some 

parsers will not detect this error until after reducing x to a statement since, in Pascal, an 

identifier by itself is a syntactically correct procedure statement. Unless the error 

recovery algorithm is able to undo the effects of the erroneous reductions, it will be 

unable to find a good recovery. At best, it might report that a malformed statement has 

been detected. 

The Pascal if-statement illustrates a harder problem. Consider the statement 

if x < 11 then min := x; else min := 11 

Pascal does not permit a semicolon to precede the keyword else. However, a natural 

grammar for if-statements would have the parser reduce the text to the left of the 

semicolon to a statement before shifting the semicolon. If that happens and there is no 

means of undoing the erroneous reductions, the likely response to this error would be to 

delete the keyword else. To avoid the erroneous reductions in this case, the parser 

would have to check two symbols of lookahead before doing a reduction. 

There are two general methods for avoiding the harmful effects of erroneous 

reductions. Parsers can be constructed so that they are less likely to perform an 

erroneous reduction. Alternatively, it is possible to provide the ability to undo erroneous 

reductions. This chapter explores implementations of both techniques. 

6.1 General Backtracking 

Some authors [Lev75, FL76, MM78] have advocated using a general backtracking facility 

to solve the problem of erroneous reductions. Two methods of implementing such a 

facility have been suggested. One method involves building the derivation tree for each 

nonterminal symbol as it is recognized. "When a error is detected, the trees provide the 

information needed to undo any reductions. 

The other method for implementing general backtracking relies on reparsing 

portions of the input text. An index into the input text is maintained for each entry in 

the parse stack. The index for an entry references the first token in the text from which 

the entry was derived. Suppose that the configuration of the parser is to be backed up to 

the configuration it had before shifting some token t. First, the rightmost entry e in the 

parse stack whose index references either t or a token to the left oft is found. The index 

into the input text for e is saved, and then e and all entries to the right of it are popped 
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off the parse stack. Lastly, the portion of the input text starting from the token 

referenced by the index that was saved and ending with the token immediately to the left 

of t is reparsed. 

Backtracking and semantics-directed error recovery are compatible. However, if 

backtracking is used, the state of the parse and the state of semantic analysis must be 

kept consistent. Thus, if some reductions are undone, the effects of the semantic actions 

associated with them must also be undone. A compiler based on the model of 

compilation described in Chapter 5 that uses a history-based symbol table organization 

can efficiently reverse the effects of semantic actions. 

The techniques for implementing general backtracking that have been proposed so 

far are too slow to be practical. The parse tree for a program typically occupies from ten 

to one hundred times as much space as the original input text. The time and space 

needed to construct derivation trees render the derivation tree based method impractical. 

The method based on reparsing does not suffer from serious space overheads. If there is 

not enough space to store the input tokens in main memory, they can be reread from the 

source file. The trouble with reparsing is the time involved. Suppose that an error is 

detected just after a large procedure has been recognized. Backing up the parse by one 

token would require reparsing almost the entire procedure. 

Error recovery algorithms that perform general backtracking can have trouble with 

multiple errors. Suppose the recovery algorithm backs up over text created by an earlier 

recovery. If the algorithm makes a change to the input text to the left of the patched 

text, it may cause the patched text to become erroneous. Indeed, it may even cause the 

original text to be correct. None of the proponents of backtracking have suggested a 

satisfactory solution to this problem. 

6.2 Suppressing Default Reductions 

Default reductions are a commonly used space saving technique for LR parsers. Suppose 

M is an LR parser, and f is its action function. Default reductions are equivalent to 

creating a new parser M' whose action function f' can be encoded in less space. M and 

M' are identical except for their action functions. The function f' differs from f only in 

that for some arguments for which f returns the error action, f' returns a reduce 

action. If q is a state such that for some lookahead string x f(q, x) is a reduce action, 

then for every lookahead string v such that f { q, v) is the error action, /'( q, v) is a 

reduce action. The language recognized by M' is the same as the language recognized 

byM. 

The only effect default reductions have on parsing is to delay syntactic error 

detection until after some erroneous reductions have been done. Consider the erroneous 

statement 

k := m, + 1 

where k and m are integer variables. The apparent error is that an extra comma has 

been inserted. A canonical LR(l) parser for Pascal will not do any reductions involving 

m before the error is detected. However, an LR(l) parser that uses default reductions 

will reduce the text preceding the comma to a statement before detecting the error. 

Thus, if the error recovery system is unable to do backtracking, it will not be able to 

recover gracefully from this error. 
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Tests based on the Ripley-Druseikis suite [RD78] indicate that most erroneous 

reductions are the result of default reductions. Therefore, eliminating default reductions 

will prevent most erroneous reductions. A side benefit of not using default reductions is 

that parsers that do not use default reductions can be made to run faster than those that 

do. Unfortunately, eliminating default reductions can cause the parse tables to grow 

dramatically. The size of the increase depends on the table packing algorithm used to 

encode the parse tables. For the parser generator Bison, the size of the parse tables for a 

grammar for Fortran 77 [ANS78] more than doubled when default reductions were not 

used. The size of the parse tables for a Pascal grammar were about 2.8 times as large. 

A parser that uses default reductions can be extended so that its error checking 

capabilities equal those of parsers that do not use default reductions. A bit array, called 

the default array, can be used to indicate those contexts in which a default action should 

be done. The default array is indexed by states and lookahead strings. If the action for 

a given state and lookahead string is the default action for that state, the entry for that 

state and symbol is 1; otherwise, it is 0. A parser can avoid performing erroneous default 

reductions by checking the default array before performing each default reduction to see 

if the lookahead is legal. 

The advantage of using a default array over eliminating default reductions is that 

less space is needed. The default array for the Pascal grammar mentioned above has 

been generated. When represented as a simple two-dimensional bit array, the default 

array occupied 2,648 bytes. About 40% of the rows of the default array contained all 

zeros, which suggests that standard bit table packing techniques could dramatically 

reduce the space needed to represent the default array. Except for the default array 

itself, the tables used by the version of the parser that uses the default array to check 

the legality of default reductions are identical to those used by the version of the parser 

that uses default reductions without checking that the lookahead token is legal. Since 

the default array is about 52% as large as the other tables taken together, the parse 

tables for the version of the parser that uses the default array are about 52% larger than 

the parse tables for the version of the parser that uses default reductions without 

checking their legality. This increase is admittedly large. Nonetheless, the tables for the 

version of the parser that uses the default array are only about 57% as large as the 

tables for the version of the parser that does not use default reductions. 

It may seem that using a default array would make a parser slower. However, 

timings have shown that using a default array can make a parser faster. The two parsers 

used for the timings were versions of the parser used in the Pascal auditor with all 

semantic operations removed. The only difference between them was that one tested if a 

default reduction should be done before testing if a shift should be done and the other 

did not. The version of the parser that did the early test for default reductions was as 

fast as or slightly faster than the control version for all programs used in the timings. 

The reason for this result is now clear. Parsers typically perform many more reductions 

than shifts, and most of those reductions are default reductions. Normally, a parser 

must check if a shift or a nondefault reduction should be done before applying a default 

reduction. However, if a default array is used, it is possible to tell if a default reduction 

should be done without first having to check if other parsing actions should be done. 

Therefore, the net parsing time is reduced. 

Whether suppressing default reductions prevents enough erroneous reductions to 

permit good error recovery depends on the language being parsed and on the specific 

parsing technique. For Pascal, suppressing default reductions is not always sufficient, as 

is shown by the if-statement example given at the start of this chapter. Also, for parsers 

using SLR(l) tables, just elimin~ting default reductions will still allow many harmful 
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erroneous reductions. For parsers using LALR(1) tables, suppressing default reductions 

still allows some erroneous reductions that would be avoided if full LR( 1) error checking 

were performed. However, the Ripley-Druseikis test suite contains no examples of errors 

where LALR(1) error checking allows erroneous reductions that would not also be 

allowed with full LR(1) error checking. 

6.3 Pretesting 

A canonical LR(1) parser never does a reduction if the symbols represented by the 

contents of the parse stack together with the lookahead symbol do not constitute a 

correct prefix. Parsers using SLR(1) or LALR(1) tables, on the other hand, sometimes do 

reductions when the lookahead is not part of a legal input. However, they will never 

shift over a symbol that is not part of a correct prefix. That fact can be exploited to 

allow full LR(1) error checking when parsing with SLR(1) or LALR(1) tables. 

LR(1) pretesting of a configuration of an LR parser consists of testing if the parser 

will enter an error configuration after doing zero or more reductions. Pretesting can be 

implemented by emulating parsing on an auxiliary parse stack. A more efficient 

implementation is described below. Pretesting can provide full LR(1) error checking in a 

parser using SLR(1) or LALR(1) tables. Whenever the parser is about to do a reduction 

while in a state that was entered by shifting over a terminal symbol, it should pretest its 

current configuration. If pretesting reveals that the parser will enter an error 

configuration after performing some reductions, the lookahead symbol cannot be part of 

a legal sentence. In such a case, the error recovery system should be invoked before any 

reductions are done. 

LR(1) pretesting can be implemented by the function Shiftable shown in Figure 6.1. 

Shiftable takes a symbol as its argument. For pretesting, the symbol should be the 

lookahead symbol. ParseStack is the global parse stack. ShadowStack is a local variable 

used to record the effects of shifts done during testing. ShadowStack is needed because 

the parse stack must be left unchanged. The variable j indicates the current number of 

entries in the shadow stack. Note that j is never greater than one unless a .>.-reduction is 

done. If the parser never does a .>.-reduction, Shiftable can be made much simpler. 

Shiftable also uses some global functions. The function f is the parsing automaton's 

action function, and g is its goto function. The function rhslen takes a rule as its 

argument and returns the length of its rhs. The function lhs takes a rule as its argument 

and returns its lhs. 

Using Shiftable to perform LR(1) pretesting amounts to parsing the input text 

twice. Some of the duplicated effort can be avoided by recording the sequence of rules 

used in reductions during pretesting. Whenever pretesting reveals that the next token 

can be shifted, the parser can apply the recorded sequence of rules without having to 

recompute it. 

LR( 1) pretesting permits full LR( 1) error checking to be done by a parser using 

SLR(1) or LALR(1) tables. In that respect, pretesting is superior to suppressing default 

reductions. However, unlike suppressing default reductions, pretesting significantly slows 

the parser. Timings indicate that LR(1) pretesting may add as much as 15% to the time 

spent in parsing a program. However, this increase is not as bad as it might seems since 

the total time a compiler spends parsing is typically less than 5% of the total compilation 

time. Therefore, pretesting should add less than 1% to the total compilation time. 



function Shiftable( s: symbol): Boolean; 

var ShadowStack: stack of symbol; 

begin 

end 

i - the index of the top of the parse stack; 

i-0; 
k - the current state; 
while f(k, s) =reduce p for some rule p do 
begin 

end; 

j- j- rhslen(p ); 
if j < 0 then 
begin 

i- i + j; 
k- g(ParseStack[i], lhs(p)); 

i-1 
end 
else 
begin 

end; 

k- g(ShadowStack[i] - lhs(p ); 

i- i + 1; 

ShadowStack[j] = k 

if f( k, s) = error then 
return false 

else 
return true 

Figure 6.1 The function Shiftable 

6.4 LR(k) Error Checking via Stack Restoration 
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It is possible to provide full LR(k) error checking, for fixed k, in an LR(1) parser using 

LR(1), SLR(1), or LALR(1) tables. A practical method for implementing LR(k) error 

checking was suggested by Burke and Fisher [BF82]. While parsing, the numbers of the 

rules used in reductions are stored in a FIFO queue called the rule number queue. 

Whenever the parser shifts over a terminal symbol, a marker is placed in the rule 

number queue. The marker indicates which symbol is shifted and the location of any 

associated semantic data. The parser counts the number of markers in the rule number 

queue. Whenever there are k markers in the queue, the parser removes entries from it 

one at a time. Each time a rule number is removed from the queue, the semantic action 

associated with that rule is applied to the semantic stack. Then, a number of elements 

equal to the length of the rhs of the rule are popped off the stack and the semantic value 

associated with the lhs of the rule is pushed onto it. When a marker is removed from the 

queue, the semantic data associated with the marker is pushed onto the semantic stack, 

and then parsing resumes. Thus, the Burke-Fisher technique for LR(k) error checking 

imposes a k token delay between the point when a rule is used during parsing and the 



44 

point when associated semantic action is applied. Therefore, the parser stack and the 

semantic stack must be implemented as separate data structures. 

After an error is detected, the contents of the parse stack must be restored. Let f. 

be the number of markers in the rule number queue. Then the contents of the semantic 

stack correspond to the contents of the parse stack before it shifted over the last f. 

tokens. Because of that delay, the semantic stack already contains the proper values. 

Restoring the parse stack brings it into line with the semantic stack. To facilitate the 

restoration, Burke and Fisher use yet another stack called the symbol stack. The symbol 

stack is maintained in parallel with the semantic stack. \Vhenever the parse applies a 

rule to the semantic stack, it is also applies that rule to the symbol stack. A number of 

elements equal to the length of the rule's rhs are popped off the symbol stack, and then 

the symbol on the rule's lhs is pushed onto the symbol stack. \Vhenever a marker is 

found, the token named in the marker is pushed onto the symbol stack. Thus, the 

symbol stack contains the sequence of symbols corresponding to the accessing symbols of 

the sequence of states in the parser stack just before it shifted over the f-th previous 

token. Therefore, the parse stack can be restored by successively applying the parser's 

goto function to the elements of the symbol stack, starting from the parser's initial state. 

The lookahead can be reconstructed from the markers in the rule number queue. 

It may appear that the Burke-Fisher algorithm could be made faster by saving the 

states corresponding to the earlier version of the parse stack instead of the symbols. The 

problem is that the states would have to be computed from the goto function. Therefore, 

the time required to parse error-free text will increase. 

There is an alternative way of restoring the parse stack that does not require 

maintaining a symbol stack. The rule number queue together with a copy of the 

grammar being parsed provide the information needed to restore the parse stack. The 

effects of the reductions corresponding to the contents of the rule number queue must be 

undone in the reverse of the order in which they were ·done. \Vhile there are any rule 

numbers left in the rule number queue, the effects of the corresponding reductions must 

be reversed. If the accessing symbol of the topmost state in the parse stack is a terminal 

symbol, the state is popped off the stack and its accessing symbol is placed in a 

lookahead buffer. That process is repeated until a state whose accessing symbol is a 

nonterminal symbol is at the top of the parse stack. That state is popped off the stack. 

Next, the rule number at the end of the rule number queue is removed from the queue. 

The states the parser would enter while shifting over the rhs of the indicated rule 

starting from the current top of the parse stack are then pushed onto the parse stack. 

This method is used to implement LR(2) error checking in the Pascal auditor. 

6.5 Limited Backtracking 

The methods described so far for suppressing the effects of erroneous reductions work for 

syntax errors only. Semantic errors are detected by the semantic routines executed when 

a reduction is performed. There are cases where a semantic check cannot be done until 

after some erroneous reductions have been performed. Consider the program fragment 

shown in Figure 6.2. The likely error is that the comma(',') in the call of writeln should 

have been a period ('.'). The semantic routines are able to determine that C cannot be 

an argument of writeln (records cannot be written using writeln). However, they cannot 

do so before C has been reduced to the nonterminal for expressions. Since an expression 

cannot appear as the variable in a selection, the error recovery algorithm will be unable 

to recover by replacing the comma with a period unless those reductions can be undone. 



program p(input, output); 
type complex = 

record 
re, tm: real 

end; 
var C: complex; 

begin 

writeln( C, re); 

end. 

Figure 6.2 A semantic error requiring backtracking 
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While general backtracking techniques are too slow to be practical, a limited 

backtracking capability can be provided at a cost comparable to that of the full LR(k) 

error checking mechanism described in the previous section. The backtracking facility 

considered here provides the ability to back up both the parser and the semantic 

analyzer to their configurations just before the parser shifted over the k-th previous 

token. This facility assumes the model of compilation described in Section 5.3 together 

with the history based model of symbol tables described in Section 5.4. The method can 

be extended to handle an inherited attribute stack as well. Therefore, it could be used in 

an evaluator for LR-attributed grammars. 

Suppose LR( k) error checking is to be provided. The limited backtracking facility 

uses a circular buffer with k+1 entries. Each buffer entry is a record of the form: 

record 

end 

lowest: 
top: 
timestamp: 
nestinglevel: 
ParseStack: 
Semantic Stack: 

integer; 
integer; 
integer; 
integer; 
array [1 .. MAXDEFTH] of integer; 

array [1 .. MAXDEPTH] of SemanticType 

where MAXDEFTH is the maximum size of the parse stack and SemanticType is the 

type of the entries in the semantic stack. Note that each buffer entry is large enough to 

contain copies of the entire parse stack and the entire semantic stack. Therefore, k must 

be small or else too much space will be needed. The parser keeps track of the number of 

the lowest stack element affected by any reduction since the previous shift. In an 

implementation for LR-attributed grammars, it must also keep track of the lowest entry 

in the inherited attribute stack that has been affected. After the parser shifts over a 

terminal symbol, a snapshot of the entries of the parse stack and the semantic stack that 

have changed since the previous shift are stored in the buffer. Let l be the number of 

the lowest element in the parse stack that has changed, and let t be the number of the 

current top of the parse stack. Then the snapshot consists of an entry in which the field 

lowest is set to l, top is set to t, timestamp is set to the current value of the timeclock, 
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nesting/eve/ is set to the current nesting level, and elements l through t of the parse 

stack and the semantic stack are copied into the corresponding locations of the 

ParseStack and SemanticStack fields, respectively. Unlike the stack restoration scheme, 

the limited backtracking facility does not impose a delay between the time a reduction is 

done and the time the corresponding semantic actions are executed. If there are any free 

slots in the buffer, the snapshot is stored in the next free slot. If every slot is full, the 

slot that contains the oldest snapshot is freed and the new snapshot is stored there. The 

parser and error recovery routines must keep track of the number of full slots. 

The buffer provides the information needed to do backtracking. Suppose an error 

has been detected. Let m be the number of full slots. If the buffer is empty, no 

backtracking is done. Otherwise, the last m -1 tokens to be shifted are placed in a 

lookahead buffer. Since slots are filled just after doing a shift, the accessing symbol of 

the state at the top of the recorded segment of the parse stack will be the token the 

parser shifted to enter that state. Therefore, for each full slot, the token the parser 

shifted just before the slot was filled can be determined. For each full slot other than the 

oldest full slot, the token shifted when the slot was filled is determined, and it and its 

associated semantic value are placed in the lookahead buffer. The symbol table is backed 

up to the point indicated by the timestamp and nesting level fields of the oldest full slot 

in the buffer. The contents of the parse stack and the semantic stack are then restored. 

The segments of the parse stack and the semantic stack stored in the oldest filled slot are 

copied back into locations from which they were copied. The top of each stack is reset to 

value of the top field of the oldest slot. Let l be an integer variable. Initially, l is set to 

the value of the lowest field of the oldest slot. Starting from the next oldest slot and 

working up to the most recently filled slot, the backtracking algorithm checks iff' is less 

than l, where £' is the value of the lowest field of the slot. If it is, entries l' through l of 

the ParseStack and SemanticStack fields of the slot are copied back into the 

corresponding locations of the parse stack and the semantic stack, respectively, and then 

l is reset to l'. 

For correct programs, the efficiency of this backtracking scheme should be 

comparable to the LR(k) error checking techniques described in the previous section. 

The scheme's efficiency depends on the size of the entries in the semantic stack. If those 

entries are large, they will take a long time to copy. However, if they are too large, 

parsing will be slow regardless of whether any backtracking capabilities are provided. 

Therefore, the compiler writer already has reasons to make those entries as small as 

possible. 

6.6 Comparing the Techniques 

A variety of schemes for avoiding the harmful effects of erroneous reductions have been 

presented. Each technique other than general backtracking is suitable for use in a 

practical compiler. Each technique other than general backtracking has been 

implemented and tested using the Ripley-Druseikis suite of erroneous Pascal programs 

[RD78]. The Ripley-Druseikis suite consists of 126 Pascal programs containing about 200 

errors. The results of those tests are considered in this section. 

The Ripley-Druseikis suite revealed some interesting facts about the benefits of 

suppressing erroneous reductions. The Pascal auditor implements semantic checking as 

described in Section 4.3 and LR(2) error checking as described in Section 6.4. Disabling 

both semantic checking and the LR(2) error checking mechanism caused the error 

recovery algorithm to yield poorer recoveries for 36 errors. Exactly one error was 
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diagnosed more accurately. \Vhen only the LR(2) error checking mechanism was 

disabled, only 7 errors were not handled as well as when both error checks were made. A 

reason for the improvement is illustrated by the example given at the start of this 

chapter. In that example, the symbol x in the statement 

X= 0.0 

is reduced to a procedure statement and then to a statement before the error is detected. 

However, if x is not a procedure identifier, the semantic error is detected before x is used 

in a reduction. Therefore, the error recovery routine is able to find the best repair. 

\Vhen only semantic error checking was disabled, only 7 errors were not handled as well 

as when both checks were made. Almost every error that was less accurately diagnosed 

when only semantic checking was disabled was either a procedure call with square 

brackets around the parameter list or an array reference with parentheses around the 

subscripts. 

There was little difference in the results obtained for the various techniques for 

avoiding the effects of erroneous reductions. The tests were all done with semantic 

checking disabled. There was no difference between the results obtained by suppressing 

default reductions and those obtained by doing full LR( 1) error testing. There were two 

errors for which the recoveries done when using LR(2) error checking were better than 

those done when using LR( 1) error checking. One of those two errors would have been 

handled just as well in the LR(1) case if semantic checking had been enabled. Frankly, 

these results are counter-intuitive. It is easy to construct plausible examples for which 

LR( 1) checking is not sufficient. It is surprising that so few such examples are included in 

the test suite. 

The Ripley-Druseikis sample of erroneous programs contains no examples of errors 

for which limited backtracking proves superior to stack restoration. However, this 

absence appears to be an artifact of the sample. The sample was created to test 

syntactic error recovery techniques. Therefore, every error represented in the sample can 

be detected syntactically. However, an admittedly small sample of erroneous programs 

gathered locally indicates that limited backtracking can lead to better recoveries for 

about half of those syntactic errors that are detected semantically. 

The test results indicate that checking one symbol of lookahead should prove 

sufficient for Pascal. Any of the techniques considered could be used to provide that 

degree of checking. Suppressing default reductions and using limited backtracking would 

appear to be the best methods. Suppressing default reductions would be the clear choice 

if speed were the critical factor or if semantic checking were not done. If semantic 

checking is done, the best recoveries will be produced with limited backtracking. 

If LR( k) error checking is to be done, either stack restoration or limited 

backtracking should be used. If semantic checking is not done during normal 

compilation, stack restoration would be the method of choice. The semantic restrictions 

that must be observed to use the limited backtracking techniques are too burdensome to 

be used simply to gain the advantages of LR(2) error checking. If semantic error 

checking is done, limited backtracking would be the better choice. 
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Panic Mode for LR Parsers 

Panic mode has been used since the late 1950's. Most programming languages then were 

line-oriented; i.e., each line of a program could be parsed in isolation. Therefore, a 

compiler recover could from a syntax error by discarding the line in which the error was 

detected and resuming normal compilation with the following line. 

That form of panic mode cannot be used with modern programming languages and 

compilers. Most modern programming languages treat line ends as ordinary separators, 

undistinguished from blanks, tabs, and other separators. Furthermore, modern parsing 

techniques, such as LL( 1) and LR( 1 ), are dependent upon left context information that is 

stored in the parse stack. If a panic mode recovery leaves the parse stack in an improper 

configuration, the parser will probably detect spurious errors later. Therefore, a panic 

mode algorithm that simply discards lines will often produce bad recoveries. 

Many panic mode algorithms are for use with top-down parsers only. The 

algorithms used with LR parsers generally do not work as well as those for top-down 

parsers. Some reasons it is easier to implement panic mode for top-down parsers are 

discussed in later sections. 

This chapter begins with a list of desirable properties for panic mode algorithms. It 

surveys some existing panic mode algorithms, and examines their strengths and 

weaknesses. A new panic mode technique for LR parsers that is a synthesis of the best 

features of some existing algorithms is presented. A user's view of the new technique is 

given first, followed by a discussion of implementation issues. The chapter concludes 

with a discussion of how semantic analysis may be affected by panic mode recoveries. 

7.1 Desirable Characteristics for Panic Mode Algorithms 

This section presents a list of desirable properties for panic mode algorithms. The 

algorithms presented in later sections are judged by how well they satisfy these 

properties. The list is, at least in part, subjective. 

A panic mode algorithm should recover as soon as possible. That is, as 

little of the input text as possible should be skipped. The types of errors that will cause 

an error recovery system to resort to panic mode are, naturally, difficult errors from 

which to recover. However, if the panic mode algorithm does not recover as quickly as 

possible, there is a chance that the compiler will fail to detect other errors in the input 

text. For example, consider the code fragment 

i :== i - 1 ; pop the stack } 
if i < 0 tehn error;' 

There are two apparent errors here; a left comment brace has been omitted on the first 

line, and the keyword then has been misspelled on the second. Many panic mode 

algorithms would recover from the first error by skipping ahead to the semicolon on the 
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following line. Therefore, the misspelled keyword on the second line would not be 

detected. 

A panic mode algorithm should not cause spurious errors. This property is 

both clearly desirable and generally unachievable. It also conflicts with the previous 

property. If the algorithm tries to recover too soon, there will be instances in which 

spurious errors will be indicated. For example, consider the code fragment 

while x > 0 do 
+ 1)) + a[k]; 

A possible cause for the error is this example is that a line that should appear between 

the two lines shown has accidently been deleted. A panic mode algorithm might recover 

from this error by deleting the text between the keyword do and the identifier a, and 

resuming normal parsing with a. The array reference a[i] would then appear to be the 

start of an assignment statement. However, upon reaching the semicolon, a spurious 

syntax error will be detected. 

A panic mode algorithm should issue informative error messages. Many 

implementations of panic mode produce vague messages such as "syntax error" or 

"unexpected input." One reason that programmers make errors that cause panic mode to 

be invoked is that they do not understand where it is legal to use particular constructs. 

Therefore, if a recovery is not accompanied by a message indicating what type of 

construct the panic mode algorithm considered the erroneous construct to be, the 

programmer is apt to be more confused than aided by the resulting error message. 

Consider, for example, the program fragment 

program p(input, output); 

begin 
var x, y: real; 
readln(x, y); 

The apparent error here is that a declaration has been include inside a compound 

statement. It may be that the programmer believes that declarations should appear 

inside compound statements. In that case, an uninformative message such as 

"unexpected input" is apt to be confusing. If, on the other hand, the error message 

indicated that a statement was expected, the programmer would at least be informed 

that a statement rather than a declaration was expected in that context. 

A panic mode algorithm should be easy for a compiler writer to use. No 

matter how good an error recovery algorithm may be, if it is hard to use, it will not be 

used. Some implementations of panic mode require no data other than the parser's 

tables. Those algorithms require no effort on the part of the compiler writer. However, 

such algorithms cannot be tuned to take advantage of the compiler writer's knowledge of 

the language to be compiled. As a result, the recoveries are sometimes of poor quality. 

At the other extreme, it has been suggested that panic mode could be implemented by 

having the compiler writer supply a recovery routine for each error action in the parse 

table. While that scheme could produce good recoveries, the amount of work required of 

the compiler writer is staggering. 

A panic mode algorithm should not be too slow. If an error recovery system 

includes a good local recovery algorithm, the speed of its panic mode algorithm should 

not be critical. A study of the Ripley-Druseikis sample of erroneous programs suggests 



50 

that a good local recovery algorithm should be able to handle at least 80% of the errors 

that are detected. Therefore, only about one error is five will cause the panic mode 

algorithm to be invoked. Nonetheless, the panic mode algorithm must not be so slow 

that when it is invoked, it dominates the total compile time. 

7.2 Some Earlier Panic Mode Algorithms 

7 .2.1 Aho and Ullman's algorithm 

Aho and Ullman [AU77] give a simple algorithm for implementing panic mode for LL 

parsers. The compiler writer supplies the algorithm with a list of synchronizing tokens. 

When the panic mode algorithm is invoked, it skips over the input until it finds a 

synchronizing token. It then tests if that token can follow the symbol at the top of the 

parse stack. If so, normal parsing is resumed. Otherwise, the algorithm pops the top 

symbol off the stack and then loops back to the test. If the parse stack is emptied, 

compilation is terminated. 

The recoveries produced by Aho and Ullman's algorithm is fair at best. Its major 

flaw is that the set of synchronizing tokens is the same for all contexts. For real 

programming languages, there is no set of synchronizing tokens that is suitable for every 

context. For example, consider the case of Pascal. If the token end is not a 

synchronizing token, the algorithm will skip over instances of end. Skipping over 

instances of end within the statement part of the program will almost always lead to 

spurious errors. Suppose, on the other hand, the keyword end is always considered to be 

a synchronizing token. Then if the programmer has erroneously included an instance of 

the keyword end in the declaration part of a block, the panic mode algorithm might 

recover by terminating the enclosing block. 

7 .2.2 Pai and Kieburtz' algorithm 

Pai and Kieburtz [PK80] present a panic mode algorithm that is essentially an 

enhancement of the algorihm given by Aho and Ullman. Pai and Kieburtz call 

synchronizing tokens fiducial symbols. Their algorithm uses a different test to decide if 

the symbol currently at the top of the parse stack can be followed by a particular fiducial 

symbol. The test succeeds if there is a string whose length is less than or equal to some 

predefined bound such that the concatenation of the symbols in the parse stack, the 

string, and the fiducial symbol form a correct prefix. If the test succeeds, the shortest 

such string is inserted ahead of the fiducial symbol before normal parsing is resumed. 

The Pai-Kieburtz algorithm should usually outperform the simpler algorithm 

presented by Aho and Ullman. For example, when the simpler algorithm is used for 

Pascal, it does not help to make keywords that start statements, such as for, while, and 

if, fiducial symbols since, for normal Pascal grammars, they cannot directly follow any 

symbol that can be pushed onto the parse stack. With the Pai-Kieburtz algorithm, those 

symbols can profitably be made fiducial symbols. If the algorithm finds one of those 

symbols while scanning through the input text, it can insert a semicolon ahead of the 

symbol before resuming normal parsing. Therefor~, the algorithm will not have to skip 

as much of the input text in some cases. However, like the Aho-Ullman algorithm, the 

Pai-Kieburtz algorithm uses a single set of synchronizing tokens in all contexts. Hence, 

the Pai-Kieburtz algorithm also suffers from the problem regarding the choice of 

synchronizing tokens described at the end of Section 7.2.1. Thus, the Pai-Kieburtz 
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algorithm is better than the simpler algorithm presented by Aho and Ullman, but the 

improvement is small. 

7 .2.3 Hartmann's algorithm 

Hartmann's compiler for Concurrent Pascal [Har77) contains an interesting panic mode 

algorithm. Hartmann's algorithm is a refinement of the panic mode algorithm used by 

Ammann [Amm81] in the Zurich implementation of Pascal. The Concurrent Pascal 

compiler uses a recursive descent parser. Whenever a syntax error is detected, the 

routine error is called. Error takes two parameters: the number of the error that was 

detected, and a set of tokens. The tokens in that set are called the key tokens; they 

serve the same function as synchronizing tokens. Error first prints an error message 

corresponding to the error number. Next, it skips through the input text until it either 

finds a key token or reaches the end of file. Normal parsing then resumes. 

The set of key tokens passed to error depends on context. The parse routines for 

each language construct, such as statements, declarations, and expressions, take a set of 

tokens as a parameter. That set is to be the set of key tokens for that construct. For 

example, when the routine for parsing if-statements calls the routine for parsing 

expressions, the argument of the call will be the set of key tokens for the if-statement 

plus the token then. The set of key tokens for a construct is the set of all tokens that 

are permitted to follow that construct. 

Hartmann's algorithm works remarkably well. Unlike the previous algorithms, it 

recovers quickly from most errors and rarely creates situations in which spurious errors 

will be detected. The method is not flawless, but its flaws are minor. There are some 

cases where the Pai-Kieburtz algorithm outperforms Hartmann's algorithm. Those cases 

arise because the Pai-Kieburtz algorithm is able to insert as well as delete when 

recovering from an error. For example, if the keyword begin is missing from the start 

of a block in a Pascal program, Hartmann's algorithm will consider the remaining input 

text to be part of the declaration part of the program (until it reaches an occurrence of 

begin). The Pai-Kieburtz algorithm will scan through the input text until it finds a 

keyword that starts a statement. It will then recover by inserting the token begin ahead 

of the keyword. Hartmann's algorithm is also less "automatic" than most other 

algorithms. The compiler writer must write all the calls to error himself. He must also 

maintain the correct values for the sets of key tokens. 

7.2.4 The Yacc algorithm 

The algorithm used in Yacc parsers [Joh78] is perhaps the best-known panic mode 

algorithm for LR parsers. The Y ace algorithm makes use of a special token called the 

error token. The error token is used to indicate those contexts from which parsing may 

continue after an error. The error token may appear as part of the rhs of any rule. 

When an error is detected, the panic mode algorithm prints a message and checks if the 

topmost state of the parse stack permits a shift over the error token. If not, states are 

popped off the parse stack until a state that does .permit a shift over the error token is 

found. The parser then performs a shift over the error token and attempts to parse the 

remaining input. However, if another error is detected before the parser shifts over three 

input tokens, the panic mode algorithm is reinvoked, but the error message is suppressed. 

The Y ace algorithm rates badly by most of the standards given in the previous 

section. It not only fails to recover quickly, it frequently fails to recover at all. For 
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example, suppose that the grammar includes the productions 

statement -+ if expression then statement 

expressiOn -+ error 

where error is the error token. Suppose that the input to the parser includes an if

statement in which the token then is misspelled. Further, suppose the parse detects an 

error within the expression part of the if-statement that causes panic mode to be 

invoked. Then the panic mode algorithm will pop the stack back to the state entered 

when it shifted over the keyword if. The only token that can be shifted over after 

shifting over error from that state is then. However, since the following instance of 

then is misspelled, it will not be recognized. If there are no later instances of the token 

then in the program, the algorithm will skip over the rest of the input text. The 

algorithm also leads to many spurious errors. If the program mentioned in the previous 

example contained another if-statement in a later procedure declaration, the panic mode 

routine would skip to the instance of the token then in that procedure and resume 

parsing. As a result, many spurious errors are likely to be detected. The standard error 

message "syntax error" is not much aid to the user. Also, it is not easy for a compiler 

writer to use the technique. Adding productions containing the error token to a 

grammar will often cause it to cease to be LALR(l), forcing the compiler writer to 

modify his grammar. However, the technique is reasonably efficient. 

The panic mode algorithm used in the Pascal auditor is a modified version of the 

algorithm used by Y ace. Much of the trouble with the Yacc algorithm stems from the 

fact that parsing must continue starting from the rightmost state in the parse stack that 

contains a shift over error. The modified algorithm tries to match the remaining input 

with any state in the parse stack that contains a shift over error. The algorithm starts 

by determining the set of synchronizing tokens. For each state in the parse stack that 

contains a shift over error, the algorithm determines the set of symbols that the parser 

could shift over after shifting over error. The set of synchronizing tokens is the union 

of those sets. The algorithm skips through the remaining input text until it finds a 

synchronizing token. It then pops the parse stack back to the rightmost state that can 

shift over that token after shifting over error. Finally, it shifts over error and normal 

parsing resumes. The modified algorithm does not include a call to a standard error 

reporting routine. The action routines associated with the rules that permit shifts over 

the error token must generate appropriate error messages. 

The modified Y ace algorithm used by the Pascal auditor corrects many of the faults 

of the original. The modified algorithm recovers from most errors and usually recovers 

as quickly as possible. Spurious errors resulting from bad recoveries are rare. If the 

compiler writer is careful, the error messages can be informative aids to the users. 

However, in one respect the modified algorithm is worse than the original. The quality of 

the recoveries performed by the modified algorithm depends in part on the exact form of 

the grammar from which the parser is generated., The forms that lead to good results 

from the panic mode algorithm are sometimes not ones that would normally be used. 

One such example occurs in the grammar for the Pascal auditor shown in Appendix A. 

To avoid some bad panic mode recoveries, the rules for declaration sections were factored 

one level more than would otherwise have been necessary. Before the grammar was 

changed, whenever a declaration appeared in the statement part of a block, the panic 

mode algorithm would discard the portion of the parse stack above the state for the 

declaration section of the block, issue a message stating that the text between the 
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declaration section and the erroneous declaration constituted a malformed declaration, 

and then continue parsing as if the statement part of the block had not yet started. 

7 .2.5 Burke and Fisher's algorithm 

Burke and Fisher [BF82] proposed a panic mode technique that works for both LL and 

LR parsers. They require the compiler writer to specify which tokens are the brackets of 

the major bracketed structures. The opening brackets are called scope openers, and the 

closing brackets are called scope closers. The term scope is used in a syntactic sense; it 

does not refer to the scope of names. The panic mode technique recovers by discarding 

portions of the parse stack and the remaining input, and by inserting scope closers. 

\Vhen an error is detected, the panic mode algorithm tests if parsing could continue with 

the remaining input if a portion of the parse stack were discarded and zero or more scope 

closers were inserted ahead of the remaining text. The parse must be able to shift over a 

predefined number of tokens {five in their implementation) for the test to succeed. The 

portion of the stack to be discarded must all be to the right of the rightmost entry 

inserted when the parser shifted over a scope opener. If the test succeeds, the stack and 

the input are modified as indicated, and normal parsing resumes. Otherwise, the first 

symbol in the remaining text is deleted and the algorithm begins again. The algorithm 

goes on until either a recovery is found or the input is exhausted. \Vhen a recovery is 

found, the algorithm tries to determine the type of syntactic construct expected in the 

context where the error was detected. If it can identify the expected construct, the error 

message it produces will name that construct. Otherwise, a general error message is 

issued. 

The Burke-Fisher technique works well in most cases. Because their algorithm does 

not permit an arbitrary portion of the parse stack to be deleted, there are some errors 

from which the algorithm cannot recover. Also, because of the long parse check, there is 

a chance that the algorithm will ignore the best recovery because of a later unrelated 

error. However, the types of errors that cause those problems are rare. A more common 

problem of their method is that the text that is deteted often does not correspond to any 

natural unit of the program. Therefore, it is sometimes difficult to determine what the 

actual error was. Also, their recoveries can turn one type of statement into another. For 

example, if there is an error in the expression on the right-hand side of an assignment, 

their algorithm will sometimes delete all symbols in the statement other than the variable 

on the left-hand side of the assignment, thus turning the assignment statement into a 

parameterless procedure call. Their technique does have the advantage of being easy to 

apply. A compiler writer need only supply the lists of scope openers and scope closers. 

7 .2.6 Sippu and Soisalon-Soininen 's algorithm 

The final algorithm considered here was proposed by Sippu and Soisalon-Soininen [SS83]. 

Their algorithm was implemented as part of an LALR{l) parser generator. The 

algorithm recovers from an error by substituting a single nonterminal symbol for 

portions of the parse stack and the remaining input text. The nonterminal symbol is 

called a reduction goal. For example, if the algorithm finds that the states at the top of 

the stack and the start of the remaining input seem to constitute a malformed statement, 

those parts of the stack and the input are deleted, and the algorithm then performs a 

shift over the nonterminal symbol for a statement. 

Sippu and Soisalon-Soininen introduce the notion of feasible reduction goals. Each 

nonterminal symbol such that there is a state in the parse stack that permits a shift over 
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that symbol is a potential reduction goal. Let q1 ... Qk qk+t· .. qn be the contents of the 

parse stack, and let A be a nonterminal symbol such that qk includes a shift over A. Let 

x be the string consisting of the accessing symbols of qk+t···Qn taken in sequence. A is a 

feasible reduction goal if and only if x is the prefix of a string y such that A~ y. Only 

feasible reduction goals are to be considered when selecting a recovery. 

Sippu and Soisalon-Soininen did not test for feasible reduction goals in their 

implementation. Instead, they use a test for a weaker condition they call weak 

feasibility. A reduction goal A is weakly feasible if the accessing symbol of the following 

state on the parse stack is the first symbol of some string that can be derived from A. 

They do not explain why they chose to implement this weaker test. The reason may 

have been speed since the algorithm they give for testing feasibility is not very efficient. 

The panic mode algorithm described by Sippu and Soisalon-Soininen tries to find 

the token in the remaining input that matches a feasible reduction in the parse stack 

such that the sum of distance of the token from the start of the remaining input and the 

distance of the reduction goal from the top of the parse stack is minimized. The 

algorithm alternates between testing new tokens against the reduction goals near the top 

of the parse stack and testing tokens near the start of the remaining input against 

reduction goals further down in the parse stack. Once a match that allows parsing to 

continue is found, the input preceding the token that was matched is discarded, and the 

contents of the parse stack above the reduction goal that was matched are popped. 

The algorithm by Sippu and Soisalon-Soininen should usually produce good 

recoveries. However, the error messages produced by their implementation are apt to be 

confusing. Each error message indicates which symbols were deleted and which 

nonterminal was substituted for them. Grammars used to implement compilers are not 

usually designed to be readable. Therefore, there is a good chance that an error message 

will refer to a nonterminal symbol that will make no sense to a naive user. 

7 .2.7 Properties that lead to good panic mode recoveries 

A number of properties that affect the quality of panic mode recoveries have been 

revealed by this survey. It has shown that 

1. the choice of recoveries should be determined by the context in 
which the error was detected, 

2. recoveries should be allowed to insert tokens as well as delete them, 

3. the compiler writer should be able to determine which symbols can 

be involved in a recovery, and 

4. the compiler writer should not be required to add special rules to his 
grammar to support panic mode. 

Most programming languages divide programs into sections that possess different 

syntactic structures. As a result, those algorithms that did not take context into account 

performed poorly for at least some contexts. Those recovery algorithms that performed 

insertions were often able to recover sooner than those that did not. The recovery 

algorithms that do not place restrictions on which symbols can be involved in recoveries 

sometimes produce confusing recoveries. Finally, those algorithms that require the 

grammars to be modified are harder to use than those that do not. Changes to a 

grammar may change its grammar class, thus making it unacceptable to the parser 
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generator. Further, some constructs must be described using nonintuitive rules to make 

the algorithm produce desirable recoveries. 

Study of the differences between the panic mode algorithms used with top-down 

parsers and those used with LR parsers reveals one reason why it is easier to produce 

good panic mode algorithms for the top-down parsers. The parse stack of a top-down 

parser contains all of the nonterminal symbols that the parser is trying to reduce. A 

recovery by a panic mode algorithm consists, in part, of determining which of those 

symbols should be completed. For LR parsers, the parse stack does not immediately 

reveal which nonterminals are to be reduced; indeed, it is in general impossible to 

determine that information. However, Sippu and Soisalon-Soininen's concept of feasible 

reduction goals provides a close approximation to that information. 

7.3 Panic Declarations 

This section gives a compiler writer's view of a new technique for implementing panic 

mode. The new technique is similar to that of Sippu and Soisalon-Soininen, but it gives 

the compiler writer greater control over the selection of recoveries. It is not an 

"automatic" algorithm in that the compiler writer must supply some additional 

information to the parser generator. The extra information consists of directives called 

panic declarations. The syntax for panic declarations given below should be considered 

illustrative, not definitive. 

The simplest form of a panic declaration is 

%panic nonterminal string 

where nonterminal is a nonterminal symbol and string is a string delimited by double 

quotes. The nonterminal symbol must not be left recursive for reasons given later. The 

declaration indicates that the specified nonterminal symbol is an acceptable reduction 

goal for the panic mode algorithm. The string is a print name for the nonterminal 

symbol to be used in error messages. The new panic mode algorithm would produce 

essentially the same recoveries as those now produced by the Pascal auditor if the 

following panic declarations were added to the Pascal grammar: 

%panic pgmhead "program header" 
%panic prchead "procedure header" 
%panic fnchead "function header" 
%panic parpack "parameter list" 
%panic del "declaration" 
%panic stmt "statement" 
%panic expr "expression" 

More specific panic declarations could be given, which would allow the panic mode 

algorithm to produce more specific error messages. For example, panic declarations could 

be given for each kind of statement in addition to the declaration for general statements. 

Adding rules containing error tokens to achieve the same purpose for a Yacc-like panic 

mode algorithm would probably introduce LALR(l) conflicts. 

If every panic declaration is of the form described above, the parser generator will 

compute the set S of tokens that can follow the listed nonterminal symbols and a finite 

state machine M, which will be used to check for feasibility. The members of S are 
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fiducial symbols. When the panic mode algorithm is invoked, it will skip through the 

input text until it finds an occurrence of a fiducial symbol. It then scans through the 

parse stack, going from right to left, looking for a state that permits a shift over a 

nonterminal symbol that is a named in a panic declaration. Each time it finds such a 

state, it tests if any of the nonterminal symbols named in panic declarations that can be 

shifted from that state are feasible reduction goals. If that test succeeds, the algorithm 

then tests if the parser could shift over the lookahead symbol after shifting over any of 

the feasible reduction goals. If a state passes both tests, the panic mode algorithm will 

pop all states above that state, shift over one of the feasible reduction goals, issue an 

error message (if the panic declaration for the goal symbol included a string), and resume 

normal parsing. If no state passes the tests, the current fiducial symbol is discarded, and 

the algorithm goes back to skipping over the text. If the input is exhausted before a 

suitable recovery is found, the algorithm will issue a message stating that it was unable 

to recover and compilation will be halted. 

The new panic mode algorithm issues two forms of error messages. One form 

indicates that the goal symbol is missing. That form is used if the recovery does not 

involve discarding a portion of the parse stack or input text. That type of recovery is 

equivalent to inserting the goal symbol at the error's detection point. The other form 

states that the goal symbol is malformed. That form is used whenever the goal symbol 

replaces one or more symbols in the parse stack or input text. 

The productions that define the nonterminal symbols named in panic declarations 

affect the efficiency and the quality of the recoveries performed by the new panic mode 

algorithm. For example, suppose the symbol expr is the nonterminal symbol for 

expressions, and suppose that expr is named in a panic declaration. In a normal 

grammar for expressions, expr would appear on the rhs of the rule defining parenthesized 

expressiOns. Now, consider the code fragment 

i := (((((i; 

In this admittedly unrealistic example, there would be six states on the parse stack that 

would allow a shift over expr, one for each level of parenthesization. Therefore, the 

panic mode algorithm must check if all six states allow shifts over feasible reduction 

goals, and since they all do, it must determine which of them permit a shift over a 

semicolon following a shift over a feasible reduction goal. Only the state corresponding 

to the symbol ':=' will pass the latter test. The grammar for expressions could be 

rewritten to avoid the need for a portion of that work. Another symbol, say expr 1, could 

be used in the recursive definition of expressions. In particular, the rhs of the rule 

defining parenthesized expressions would name expr 1 instead of expr. The symbol expr 

named in the panic declaration could then be defined as 

expr- expr1 

Therefore, in the previous example, the only state in the parse stack that would allow a 

shift over expr would be the state corresponding to the symbol ':='. 

There must also be a mechanism for specifying semantic values. For example, the 

panic declaration for expressions might be 

%panic expr "expression" 
{ $$ = make_ error_ node(); } 
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where make_ error_ node is a function that returns a special error value. 

The panic mode scheme described so far possesses all of the desirable properties 

listed in the previous section except for the ability to insert tokens. Allowing insertions 

is sometimes necessary to make any recovery possible. Consider, for example, the 

program 

program p(output ); 
var a: integer; 

begini := 1; 
if i = 1 then writeln( "ok") 

end. 

The apparent error is that the keyword begin and the identifier i have been run 

together. The lexical analyzer will recognize the merged tokens as a single identifier. 

The semicolon at the end of a declaration in Pascal is commonly made a part of the 

syntax for a declaration (to avoid an LR( 1) parsing conflict). Assume that the grammar 

has been so defined in this case. The set of fiducial symbols for a declaration will be 

const, type, var, procedure, function, begin, and perhaps label. Therefore, if the 

local recovery algorithm is unable to find a repair, and the panic mode algorithm is not 

allowed to insert the keyword begin, there is no way to recover from the error. 

Allowing arbitrary insertions can lead to ridiculous recoveries. Therefore, the 

compiler writer should be given strict control over the choice of insertions to be allowed 

during a panic mode recovery. As a general rule, insertions should be allowed only 

before keywords that can only appear in a single context. For example, in Pascal, it 

would be reasonable to allow inserting a semicolon before every keyword that could begin 

a statement, except possibly the keyword case which can also appear as part of a variant 

record. 

The compiler writer specifies which insertions are to be allowed by giving a list of 

pairs of tokens. The first token of the pair is the token that can be inserted. The second 

token is a fiducial symbol. Whenever the specified fiducial symbol is encountered during 

a forward scan by the panic mode algorithm, for each instance of the nonterminal symbol 

specified in the panic declaration that is found to be feasible, the panic mode algorithm 

will test if it would be possible to shift over both tokens of the pair (in order). If so, the 

first token is inserted and the indicated recovery is carried out. For example, to handle 

the error in the previous example, the compiler writer could supply the panic declaration 

%panic del "declaration" 
<begin, if> 

The panic mode algorithm would then be able to recover upon finding the token if by 

inserting the keyword begin ahead of it. 

Writing all those pairs can become tedious. As a shorthand, a list of symbols can be 

defined with a list declaration. The form of a list declaration is 

%list name token 1 .•. tokenn 

The name of a token list must not be the same as the name of a token. If a list name 

appears as part of a panic declaration, it is equivalent to all possible combinations of 

pairs formed from the elements of the list. For example, the declarations 
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%list 
%list 

stdelim 
stkey 

else semicolon 
begin case for goto if repeat while with 

%panic stmt "statement" 
< stdelim, stkey > 

specify that the token else or the token semicolon can be inserted ahead of any of the 

keywords that can appear at the start of a statement. The insertions are tested in their 

order of appearance. Thus, in the previous example, the algorithm would try to insert 

else before it tried to insert a semicolon. A complete set of panic declarations for Pascal 

is shown in Figure 7.1. 

%list 
%list 

stdelim 
stkey 

else semicolon 
begin case for goto if repeat while with 

%panic pgmhead "program header" 

%panic prchead "procedure header" 
{ new_scope(); } 

%panic fnchead "function header" 
{ new_scope(); } 

%panic parpack "parameter list" 

%panic del "declaration" 
< begin, stkey > 

%panic stmt "statement" 
< stdelim, stkey > 

%panic expr "expression" 
<rpar, semicolon> 
{ $$ = make_ error_ node(); } 

Figure 7.1 Panic declarations for Pascal 

One category of panic mode recoveries is handled in a special way. Consider the 

code fragment 

writeln(x, y, ((x * y); 

where there are two unmatched left parentheses. Assume that the local recovery 

algorithm cannot patch the error. If the panic declaration for expressions does not allow 

any insertions, the likely panic mode recovery for this example would indicate that the 

entire statement is malformed. A panic declaration such as 
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where "rpar" is the name for a right parenthesis, would allow the panic mode algorithm 

to recover by replacing the text starting from the second left parenthesis in the 

statement and ending with the right parenthesis with the nonterminal symbol expr. 

However, a naive implementation of the panic mode algorithm would produce a pair of 

error messages: one stating that the text that was replaced constitutes a malformed 

expression, and another indicating that a right parenthesis was inserted. However, the 

programmer is unlikely to consider the right parenthesis to be a part of the expression; 

rather, he will probably consider it to be the match of the left parenthesis following the 

identifier writeln. The error message can be brought into line with the programmer's 

likely intent at the cost of a few additional tests. If the accessing symbol of the state at 

the top of the parse stack is the same as the token to be inserted, and if the first token of 

the remaining input (before discarding any of the input) is the fiducial symbol of the 

recovery, the insertion is not done. Instead, the top state is popped off the parse stack, 

and its accessing symbol is attached to the front of the remaining input. The algorithm 

then recovers normally. 

The system described above allows only one token to be inserted as part of a panic 

mode recovery. It is easy to find examples where inserting more than one symbol would 

lead to a better recovery. However, it is harder to implement systems that allow more 

than one token to be inserted. 

7.4 The New Panie Mode Algorithm 

The test for feasibility is the most complex aspect of the new panic mode scheme. Sippu 

and Soisalon-Soininen [SS83] give an algorithm for testing feasibility in their article. 

However, their algorithm seems to be needlessly complex and inefficient. An alternative 

algorithm is given below. The algorithm is given for LALR( 1) parsers, but could be 

adapted for use with other classes of parsers. 

The test for feasibility depends on the following facts. Let G = (V, ~. P, S) be an 

LALR(1) grammar, and let M be the LALR(1) parser for G. Let q1 •.• qn be any sequence 

of states that can be the contents of the parse stack during the parse of a string. Let 

x = a 1 •.. an be the string consisting of the accessing symbols of the q/s taken in 

sequence. The string x must be the prefix of a sentential form of G. Let STA be the 

state transition automaton of M. Since x is the prefix of a sentential form, STA must be 

able to shift over x without entering an error state. Let A be a nonterminal symbol such 

that the parser can shift A while in state q;, 1 < i < n. Let GA = (V, ~. P, A), let 

MA be the LR(O) parser for GA, and let STAA be the state transition automaton for 

M A- Let z = ai+1 ..• an. Then z is the prefix of a string w such that A ~ w if and only 

if STAA can shift over z without entering an error state. Therefore, testing if A is a 

feasible reduction goal for q; is equivalent to testing if STAA can shift over z without 

entering an error state. 

A practical algorithm for testing feasibility can be based on state transition 

automata. When a parser is constructed, the parser generator also builds the state 

transition automata for every symbol named in a panic declaration. (Portions of the 

STAs can obviously be shared.) For each state, the parser generator builds a list of all 

nonterminal symbols named in panic declarations that the parser can shift while in that 
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state. Whenever the panic mode algorithm is invoked, it constructs the string of 

accessing symbols of the states in the parse stack. To test if a nonterminal symbol A is a 

feasible reduction goal starting from the i-th state in the parse stack, the STA for A is 

run over the string of accessing symbols starting from the i+lst symbol. If the STA 

does not enter an error state, A is a feasible reduction goal. 

A simple change to the feasibility algorithm can improve its efficiency. Many states 

of an LALR( 1) parser have only one item in their kernel set. Suppose A - x . y is the 

only kernel item of a state q. If q is the j-th element of the parse stack, the string 

ai+l· .. an must be the prefix of a string z such that y ~ z. If an STA shifts over the j-th 

symbol in the string of accessing symbols, it will be able to shift over the remainder of 

the string. Thus, the test for feasibility automatically succeeds if the j-th symbol is 

shifted, and so the test can be terminated at that point. Note that the only extra data 

structure needed to implement this improvement is a Boolean vector that indicates for 

each state whether the kernel item set of that state contained only one item. Further, if 

a portion of the state transition automaton for a nonterminal symbol is accessed only 

through transitions that correspond to states whose kernel item sets contain only one 

item, that portion of the automaton will no longer be referenced. Therefore, space can 

be saved by eliminating those parts of the automaton. 

A more ambitious modification can reduce the order complexity of testing 

feasibility. Suppose that the algorithm presented above is used to find every feasible 

reduction goal for a given configuration of the parse stack. Assume that the parse stack 

contains n states. There are a bounded number of reduction goals for each state. For 

each reduction goal, the algorithm's worst-case time complexity is O(n ). Therefore, the 

worst-case complexity is O(n 2
). An alternative algorithm has a worst-case upper bound 

of 0 ( n ). Let ST AA be the state transition automaton for the symbol A. Because STAA 

is a finite automaton, it is possible to construct another finite automaton RP AA that 

recognizes the reverse of the prefixes of the strings accepted by STAA. The set of 

feasible reduction goals can be computed as follows. First, construct the string of 

accessing symbols of the states in the parse stack. Then, for each symbol A named in a 

panic declaration, run RP AA over the reverse of that string. Whenever RP AA enters a 

final state, check if the state in the parse stack corresponding to the symbol just shifted 

permits a shift over A. If so, A is a feasible reduction goal for that state. Since there are 

a bounded num her of sym bois, and since each RP A requires at most 0 ( n) time to scan 

the reversed string, the worst-case complexity is O(n ). The constant of proportionality 

can be improved by merging the RPAs for the symbols named in panic declarations into 

a single finite state machine. It is unclear whether this method of finding feasible 

reduction goals or the previous method will prove better in practice. 

Suppose that the panic mode algorithm has found a fiducial symbol for which there 

are two or more feasible reduction goals. Each reduction goal is, of course, associated 

with a position in the parse stack. If one goal is associated with a position to the right of 

the positions associated with every other feasible reduction goal, that goal is selected as 

the one to be used in the recovery. If there are two or more feasible reduction goals 

associated with the rightmost position for which there are any feasible goals, there must 

be some rule for choosing among them. For example, suppose the input to the parser 

generator included the panic declarations 



%panic 
%panic 
%panic 
%panic 

Then for the code fragment 

stmt 
call 
assn 
ifstmt 

"statement" 
"procedure-statement" 
"assignment-statement" 
"if-statement" 

if i < 0 tehn 2; 
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both 8tmt and ifstmt will be feasible reduction goals. To provide the most information 

to the user, the more specific of the two, namely, ifstmt should be selected. On the 

other hand, for the code fragment 

p!h, y); 

stmt, call, and as8n are all feasible reduction goals. Since the statement could be either 

a procedure statement, or an assignment statement, the more general stmt should be 

chosen. There are examples where choosing the more specific goal is wrong even when it 

is the only one of the more specific goals that is feasible. For e~ample, given the code 

fragment 

a(i) = 0; 

the parser will shift over every token up to and including the right parenthesis. 

Therefore, the only feasible reduction goals will be stmt and call. In this case, it is 

clearly better to choose the more general construct stmt over the more specific one call. 

This type of situation is rare for Pascal, but is more common for C [KR78]. , 
The examples above suggest the following rules for selecting among feasible 

reduction goals. Let S be the set of nonterminal symbols named in panic declarations. A 

partial order relation R can be defined over S. The relation xRy is true if and only if 

x ~ yz for some string z. R is well-defined because left-recursive symbols cannot be 

named in panic declarations. Let F be a set of reduction goals. For each pair of symbols 

x, y in F, one symbol will be preferred over the other. If xRy and there is no other 

symbol z in F such that xRz, then y is preferred over x. If xRy and there is at least one 

symbol z in F such that xRz, then x is preferred over !I· If no relation is defined between 

x and y, the symbol named earlier in the list of panic declarations submitted to the 

parser generator is preferred. Therefore, any set of reduction goals can be sorted by 

order of preference. 

The new panic mode algorithm is given in Figure 7.2. The contents of the parse 

stack are denoted by q1 ••• qn. The set S of fiducial symbols consists of all tokens that 

can follow a nonterminal symbol named in a panic declaration plus all tokens explicitly 

named as fiducial symbols in panic declarations. For each state q, the set G q consists of 

every nonterminal symbol A named in a panic declaration such that there is a shift from 

q over A. For each state q and each token t, Iq,t is the list of symbols which can be 

inserted before t as part of a recovery in which q is the reduction goal. The function 

feasible takes a nonterminal symbol, a string, and the index of a position in the parse 

stack as arguments. It returns true if the symbol is a feasible reduction goal of the 

indexed position and false otherwise. The function shiftable takes a sequence of states 

and a string as arguments. It returns true if the parser would be able to shift over the 
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procedure PanicMode; 
begin 

first - true; 
recovered - false; 
for i - 1 to n do 

ai - the accessing symbol of qi; 
while not recovered and the input has not been exhausted do 

begin 
t - the next input token; 
advance the input by one token; 

if t E S then 
begin 

fori- n downto 1 do 
begin 

l- 0; 
for x E Gq; do 

if feasible( x, a 1 ..• an, i) then 
begin 

end; 
m-0; 

l-l + 1; 
gl- x; 

for j - 1 to l do 
if shiftable(q1 .•• qn, git) then 
begin 

end; 

m- m + 1; 
hm- Uji 

if m > 0 then 
begin 

A- preferred(h, qi); 
name- the print name of A; 

if first and i = n then 
issue the message 'missing name' 

else 
issue the message 'malformed name'; 

pop all elements above qi offthe parse stack; 

DoParse(A); 
DoParse(t); 
recovered - true; 

end 
else 
begin 

k -1; 
while k < I Iq;,t I and not recovered do 
begin 

s - the k-th element of Iq;,t; 

m-0; 
for j - 1 to e. do 

if shiftable(q1 .•• qn, gist) then 



end 

end 
end 

end 
end; 
first - false; 

end; 

begin 

end; 

m- m + 1; 
hm- gj; 

if m > 0 then 
begin 

A - preferred ( h, q;); 
name- the print name of A; 
if first and i = n then 

issue the message 'missing name' 
else 

issue the message 'malformed name'; 
if not first or i =f n - 1 or s =f an then 

issue the message 'inserted s'; 
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pop all elements above qi of! the parse stack; 

DoParse(A); 
DoParse(s); 
DoParse(t); 
recovered - true; 

end; 
k- k + 1; 

if not recovered then 
begin 

end 

issue a message stating that an unrecoverable error has been detected; 

terminate compilation; 

Figure 7.2 The new panic mode algorithm 

string (possibly after some reductions) if the parser contained the sequence of states and 

false otherwise. Shiftable is a generalization of the function described in Section 6.3. 

The function preferred takes a sequence of nonterminal symbols and a state as 

arguments. It returns the symbol of the sequence that is preferred over all the others 

according to the preferencing scheme described above. The procedure DoParse takes a 

symbol as its argument. If the symbol is a nonterminal symbol, it shifts over the symbol. 

If the panic declaration for the symbol associates a semantic action with it, that action 

will be executed. If the symbol is a terminal symbol, DoParse will parse until it shifts 

over the symbol. Semantic actions associated with any reductions that are performed 

will be executed ignoring the results of semantic checks. 

The panic mode algorithm assumes that some technique for deferring reductions is 

being used. It assumes that the parse is advanced up to the point at which the parser 

shifts over the rightmost token preceding the detection point of the error. Therefore, 

unless the first token in the program was the source of the error which caused the 
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algorithm to be invoked, the accessing symbol or the state at the top or the parse stack 
will be a terminal symbol. 

The new panic mode algorithm has been implemented by Michael C. Shebanow, a 
computer science graduate student at Berkeley. Parsers using the new algorithm have 
been constructed for C and Modula-2 [Wir83]. Good results were obtained for Modula-2 
with little effort. The grammar used to generate the parser was a straightforward 
adaptation of the grammar presented in [Wir83]. A handful of panic declarations were 
added to the grammar. The resulting implementation of panic mode produced good 
recoveries. 

The results for C initially were not as good. The problem was that in C, semicolons 
are used as statement terminators rather than as separators. Therefore, making the 
nonterminal symbol for statements a reduction goal or a panic declaration caused all 
symbols that could start a statement to be fiducial symbols. Because C is an expression 
language, identifiers, constants, and unary operators can all appear at the start of a 
statement. As a result, the panic mode algorithm often recovered too soon. The 
problem could have been solved by rewriting the grammar so that semicolons were 
treated as separators. However, Shebanow solved the problem by allowing the compiler 
writer to declare that certain symbols should not be considered fiducial. In his 
implementation, identifiers, constants and unary operators are declared nonfiducial. 

Although the new algorithm has not been implemented for Pascal, it has been 
hand-simulated for those errors in the Ripley-Druseikis suite that caused the Pascal 
auditor to invoke the panic mode algorithm. The panic declarations shown in Figure 7.1 
were used for the simulation. Even with only seven panic declarations, the new 
algorithm performed at least as well as the Pascal auditor and Berkeley Pascal [GHJ79] 
in all cases. The new algorithm also produced recoveries as good as or better than the 
Burke-Fisher techniques in most cases. However, there were a few programs for which 
the Burke-Fisher system produced better recoveries than the new algorithm. For 
example, consider the code fragment 

end; * test * 
X:= 1 
end. 

The apparent error is that the programmer has used malformed comment brackets. The 
Burke-Fisher algorithm recovers from this error at the end of the first line, while the new 
algorithm does not recover until the end of the second line. The Burke-Fisher algorithm 
was able to recover at the end of the first line because it treats all symbols as fiducial 
symbols. The new algorithm did not recover at the end of the first line because, for the 
given set of panic declarations, identifiers are not among the fiducial symbols. However, 
because the Burke-Fisher system treats all symbols as fiducial symbols, it sometimes 
recovers too quickly and so detects spurious errors. 

7.5 Semantics and Panic Mode 

Semantic information is of little use in panic mode recoveries. Each semantic check and 
each semantic action is tied to a particular class of syntactic objects. In panic mode, no 
effort is made to identify the syntactic components of the text being scanned. Therefore, 
semantic information about the text is, for the most part, unavailable. 
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A panic mode recovery can cause parsing and semantic analysis to become out of 

step. For example, if a panic mode recovery for a Pascal program causes a with

statement to be terminated, no further syntactic problems would be expected. However, 

if declarations were entered into the symbol table during semantic analysis of the with

statement and those entries were not removed because an error led to a panic mode 

recovery, spurious semantic errors might be detected later. 

Many compilers do not perform semantic analysis until the entire program has been 

parsed. In those compilers, syntactic error recovery cannot affect semantic analysis. 

Further, many compilers do not perform semantic analysis at all if any serious syntactic 

errors were detected. That approach to the problem is obviously incompatible with the 

error recovery techniques developed in this work. 

The problem of ensuring that semantic analysis does not get off track can be 

partially solved by an automatic technique. The technique requires the symbol table to 

be organized as in the limited history scheme described in Section 5.4. Recall that in 

that scheme, the nesting level that was current at the time a state was pushed onto the 

parse stack is recorded. Suppose that the panic mode algorithm presented in the 

previous section is invoked and that it finds a recovery. Let qi be the state in the parse 

stack that has been matched with a reduction goal. Let L be the nesting level recorded 

for qi. If L is less than the current nesting level, all entries in the symbol table that were 

entered at a nesting level greater than L should be removed and then the current nesting 

level should be reset to L. 

The technique just described is not always adequate. The syntactic constructs 

derived from a single nonterminal symbol usually have no net effect on the nesting level. 

The semantic actions executed while analyzing a construct may increase the nesting level 

at some times and decrease it at others, but the net effect is to leave it unchanged. For 

example, in Pascal, a with-statement will increase the nesting level once for each record 

variable named in its with-list, but at the end of the statement, the nesting level will be 

the same as it was before the with-statement was encountered. The automatic technique 

is adequate for panic mode recoveries where the chosen reduction goal has that property. 

If a reduction goal does not have that property, the technique will sometimes produce 

bad results. For example, if the reduction goal of a panic mode recovery is a procedure 

header, the nesting level should be left one greater than the nesting level recorded for the 

previous state in the parse stack. 

There are no obvious methods for handling those cases where the automatic 

technique for adjusting the status of semantic analysis proves inadequate. Unless such 

methods are found, the compiler writer will be forced to provide special codes to handle 

those cases. Because of the nature of the problem, those codes will be dependent on data 

structures created by the parser and the error handling routines. Since one of the major 

advantages of using an automatic parser generator is that the user need not understand 

the data structures it produces, that solution is unsatisfactory. 

One final note: panic mode should never be invoked as a result of a semantic error. 

Panic mode is a last resort method for getting the parser back on track after a syntax 

error. Since semantic errors are detected as a result of reductions, the parser must be in 

a legal configuration for a semantic error to be detected. Therefore, there is no reason to 

invoke panic mode for semantic errors. 



8 

An Implementation and Empirical Results 

The Pascal auditor has been used as a testbed for the error recovery techniques described 

in previous chapters. Many of the techniques described earlier have been implemented 

and evaluated as a part of the Pascal auditor. The Pascal auditor also provides empirical 

evidence of the power and the practicality of the error recovery techniques presented 

herein. The recoveries produced by the final version of the Pascal auditor have been 

compared with those produced by Berkeley Pascal [GHJ79], the Burke-Fisher system 

[BF82], and a version of the Pascal auditor that ignores semantic information during 

error recovery. 

8.1 The Bison Parser Generator 

The parser for the Pascal auditor was produced using a new parser generator named 

Bison. Bison was written to provide support for semantics-directed error recovery. 

Originally, an attempt was made to adapt the Yacc [Joh78] parser generator. Yacc 

proved hard to modify because the codes for the various functions it performs are closely 

intertwined. Therefore, that effort was abandoned, and Bison was written. 

Bison is an LALR(l) parser generator. It is based on the DeRemer-Pennella 

algorithm for computing LALR(l) lookahead sets [DP82]. It is more modular than Yacc, 

making it easier to modify. The major functional differences between Yacc and Bison are 

1. Bison directly supports the division between semantic guards and 

semantic actions discussed in Section 4.3. 

2. Bison generates the additional tables needed for the stack restoration 

scheme discussed in Section 6.4. 

3. The parse tables are organized differently to permit faster access. 

The tables are slightly larger than those produced by Yacc, but the 

resulting parsers are faster. 

4. A Bison parser maintains an additional stack, the location stack, to 

keep track of information needed for reporting errors and semantic 

data used in recoveries. ' 

Bison is faster than Yacc because it uses more efficient algorithms for generating the 

states of the LR(O) automata and for computing the lookahead sets. 

The general format of a rule in Bison is 

lhs: symbol 1 ••• symboln 
[ %guard expression ] 
[action ] 
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where lhs is a nonterminal symbol, symbol 11 ••• ,symboln, n > 0, are symbols, expression 

is a C expression, and action is a C compound statement. The square brackets are not 

part of the rule; they indicate that the enclosed text is optional. The rule causes the 

production lhs - symbo/1 ••• symboln to be part of the grammar accepted by Bison. 

The semantic attributes of the symbols can be referenced in the guard and action clauses 

using the $-conventions of Yacc; i.e., the attribute of lhs is denoted by "$$" and the 

attribute of symbolic is denoted by "$k". Information in the location stack about 

symbolic is denoted by "@k". 

The guard expression for a rule checks for semantic errors. The parser initially sets 

the global variables yyerror and yycost to zero. If an error is detected, the guard must 

set yycost to a positive value. The compiler writer selects the value based on his 

estimation of the severity of the error (more severe errors should be assigned higher 

costs). If the error is one that the compiler writer thinks might be fixed by a syntactic 

repair, he should have the guard set yyerror to one. The guard expression should have 

no side effects other than setting the values of yyerror and yycost. 

The value of a guard expression is always ignored. Therefore, guard expressions 

could have been allowed to be statements as well as just expressions. In some cases, 

restricting guard expressions to be expressions requires a function call to be used where a 

simple statement would suffice. 

The following rule is taken from the grammar for the Pascal auditor. 

arrval : name 
%guard 

chkarrname( $1) 
{ $$ = mkarrname($1, &(@1));} 

The symbol arrval is the name of the nonterminal for array variables. The symbol name 

is a nonterminal symbol that denotes a defined identifier. Another rule reduces an 

identifier to a name and checks if it is defined. If the identifier is defined but is not 

defined to be an array variable, chkarrname will set yyerror to 1· and yycost to either 5 

if the identifier is a subprogram name, or 20 otherwise. The function mkarrname 

constructs a semantic attribute containing the information about the array name that 

might be needed by later semantic routines. The reference to the location stack entry for 

the name is used when generating error messages. 

8.2 The Parser 

A Bison parser automatically performs many of the functions that are needed to support 

error recovery. An error message should report the location at which the error appears 

to have occurred. Therefore, it is necessary to keep track of the locations within the 

input text corresponding to the states in the parse stack. Bison parsers automatically 

maintain this information in the location stack. After a recovery, the next symbols to be 

read will be stored in a buffer. Whenever a Bison parser needs another symbol, it first 

checks if the buffer is empty. If the buffer is not empty, the next symbol will be taken 

from the buffer; otherwise, the lexical analyzer will be called. Bison parsers perform 

LR(2) error checking as described in Section 6.4. Because Bison parsers support these 

functions, the compiler writer is freed from having to supply codes for them. 
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A Bison parser maintains three separate stacks: a parse stack, a semantic stack, 

and a location stack. The parse stack contains the states that represent the left context 

of the parser's current state. The semantic stack contains the semantic values of the 

symbols that the parser has shifted. The location stack contains information used by the 

error recovery system. 

The location stack maintains information about the locations of the symbols 

represented in the parse stack. It also contains the timestamp and nesting level 

information needed to reverse the effects of symbol table operations. Each location stack 

entry is a record of the form 

record 

end 

timestamp: 
nesting_ level: 
first_ line: 
first_ column: 
last_ line: 
last_ column: 
text: 

integer; 
integer; 
integer; 
integer; 
integer; 
integer; 
string; 

where string is the name of a type used to represent arbitrary length strings. The 

timestamp and nesting_ level fields are set to the current values of the global timeclock 

and nesting level counter when the parser shifts over the symbol corresponding to the 

location table entry. For terminal symbols, the remaining fields must be set by the 

lexical analyzer. For nonterminal symbols, the parser will automatically set the 

remaining fields. 

The lexical analyzer must set the location and text fields for each token. The 

first_line field must be the number of the line in which the token begins, the 

first_ column field must be the number of the column in which tne first character of the 

token appears, the last_line field must be the number of the line in which the token 

ends, and the last_column field must be the number of the column in which the last 

character of the token appears. The text field must be a copy of the string representing 

the token in the input text. The string stored in the text field is used as the token's 

name in error messages. 

The parser sets the location and text fields for each entry corresponding to a 

nonterminal symbol at the time it does the reduction that produces that symbol. 

Normally, the first_ line and first_ column fields are set to the values of the 

corresponding fields of the first symbol in the handle of the reduction, and the last_ line 

and last_ column fields are set to the values of the corresponding fields of the last symbol 

in the handle. Reductions according to }.-rules constitute a special case. For a symbol 

produced by a }.-rule, the first_ line and first_ column fields are set to the values of the 

corresponding fields of the lookahead token, and the last_line and last_ column fields are 

set to the values of the corresponding fields of the entry at the top of the location stack. 

The text field of a location stack entry that is associated with a nonterminal symbol is 

set to the null string. 

The table organization by Bison parsers is based on the table packing technique 

proposed by Ziegler and described by Tarjan and Yao in [TY78]. The principal 

advantage of the table format is that the resulting parsers are fast. Parsing speed is 

important for error recovery because a piece of text may have to be reparsed several 



, 

69 

times to test potential repairs. However, the parse tables are also small. The parse 

tables for the Pascal auditor are 4,764 bytes long. The tables used for stack restoration 

are another 3,326 bytes, for a total table size of 8,090 bytes. By comparison, the parse 

tables for Berkeley Pascal are 12,816 bytes long. Much of that space is wasted, since four 

bytes are used to hold integer values that would fit in two byte integers. If two byte 

integers had been used, the tables for Berkeley Pascal would occupy 6,408 bytes. If the 

stack restoration scheme used by the Pascal auditor were replaced by LR(l) pretesting, 

the tables for the Pascal auditor would be smaller than those for Berkeley Pascal even if 

Berkeley Pascal's tables had been encoded as two byte integers. 

8.3 The Pascal Auditor's Error Recovery System 

This section and the two following sections describe the error recovery system used in the 

final version of the Pascal auditor. They tell how the various components presented in 

earlier chapters are organized within the system. The local recovery algorithm is 

described in detail so that the reader may judge which of the improvements claimed for 

the system are due to the new techniques used in the error recovery system, and which 

are artifacts of the implementation. 

The Pascal auditor invokes its error recovery system whenever the parser detects a 

syntax error and whenever a semantic guard sets the global variable yyerror to one 

during normal compilation. If the error is a syntax error, the parser backs up the 

configuration of the parse stack before invoking the error recovery system. The token 

that caused the error to be detected will then be the second syPlbol in the lookahead 

buffer. If the error is a semantic error, no backup is done. 

The error recovery system begins by testing if the lookahead buffer is full. If it is 

not, the algorithm will repeatedly call the lexical analyzer to fill the buffer. The system 

then checks if the error was a syntax error or a semantic error. The variable yyerror will 

be zero if the error was detected by the parser, and one if it was detected by a semantic 

guard. A global flag, named semantic_ error, is set to one for semantic errors and zero 

for syntax errors. The flag is needed because yyerror will be reset by semantic guards 

while testing potential repairs. The local recovery algorithm is then invoked. If the local 

recovery algorithm produces a repair, the error 'recovery system returns and normal 

parsing resumes. If no repair is found and the error was a semantic error, the error 

recovery system performs the semantic action associated with the rule that caused the 

error to be detected; otherwise, panic mode is invoked. 

The local recovery algorithm used by the Pascal auditor is based on the Graham

Haley-Joy algorithm [GHJ79]. There are two major differences between the Pascal 

auditor's local recovery algorithm and the Graham-Haley-Joy algorithm. The algorithm 

used by the Pascal auditor uses general static semantic data to direct the choice of a 

repair. The Graham-Haley-Joy algorithm uses some semantic data, but that data is 

represented syntactically (see Chapter 3). Also, the potential repairs considered by the 

two algorithms are different. 

The local recovery algorithm starts by doing a forward move over the text in the 

lookahead buffer. If the error was detected semantically, the initial forward move 

establishes the cost of making no change to the input text. The semantic cost of any 

potential repair is the sum of the values assigned to yycost. The local recovery algorithm 

will not consider a repair whose semantic cost equals or exceeds that initial cost. The 

algorithm then computes the LR(l) lookahead set for the top state of the parse stack 
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using the function Shiftable (see Section 6.3). If the first symbol in the error lookahead 

buffer is a member of that lookahead set, the LR(l) lookahead set for the configuration 

reached after shifting that token is also computed. The lookahead sets are used to 

quickly eliminate some infeasible repairs from consideration. The local repair algorithm 

then applies its repertoire of potential repairs. Syntactic and semantic costs are 

computed for each repair found to be feasible. If a repair costs less than any previous 

repair that was found to be feasible, it is logged as the current repair of choice. Finally, 

if any repairs were found to be feasible, the least costly of those repairs is applied. 

Testing a potential repair is a two step process. Repairs are implemented by 

modifying the contents of the lookahead buffer. A potential repair is tested by making a 

copy of the lookahead buffer as it would appear after applying the repair, and then 

parsing over that copy. That parse is the forward move. However, performing semantic 

analysis while doing a forward move is time consuming. Therefore, a preliminary 

forward move that consists of parsing without semantic analysis is done. If the 

preliminary forward move determines that the syntactic cost of the repair is too great to 

allow it to be chosen as the repair to be applied, the forward move with semantics is not 

done. This use of parsing to eliminate infeasible repairs is the opposite of the situation in 

the Berkeley Pascal, which uses semantic information to reduce the time spent parsing. 

Since the semantic information that is used by the Berkeley Pascal is encoded in the 

nonterminal symbols, there is little cost associated with the semantic checks. The Pascal 

auditor's use of semantic routines is more time consuming. However, because of its 

superior encoding of the parse tables, the bare bones parsing algorithm used for the 

preliminary parse runs from 5 to 8 times faster than the parser used by Berkeley Pascal. 

Empirical results show that the preliminary parse significantly improves the speed of the 

local recovery algorithm. 

The cost of a repair has three components. The dominant component is the 

distance parsed before a new syntax error is detected. If fewer than three tokens can be 

shifted, the repair is automatically rejected. The repair will also be rejected if the 

forward move does not shift at least as far as the best repair found so far. The other 

components of the cost are the semantic cost and the syntactic cost. The semantic cost 

of a repair is the sum of the values of yycost after every evaluation of a semantic guard 

done during the forward move. The Pascal auditor favors repairs whose semantic cost is 

zero over those with positive semantic costs. Recall that a positive semantic cost means 

that at least one semantic error has been found during the forward move. Since most 

errors are either purely syntactic or purely semantic, a syntactic repair whose semantic 

cost is positive is probably undesirable. If a repair has a positive semantic cost and it is 

not otherwise eliminated from consideration, its total cost for purposes of comparison 

with other repairs is formed by adding its syntactic and semantic costs. 

The syntactic cost of a repair is computed using cost functions. There are three 

cost functions: !cost, Dcost, and Rcost. !cost takes a symbol as its argument and 

returns the cost of inserting that symbol. Dcost computes the cost of deleting a symbol. 

It takes two symbols as arguments. The first symbol is the symbol to be deleted, and the 

second is the symbol that precedes it. If the two arguments represent the same symbol 

and the symbol is one without associated semantics, the cost returned is one. This 

special case is included as a heuristic. The function Rcost returns the cost of replacing 

one symbol by another. Rcost takes three arguments. The second argument is the 

symbol to be replaced, and the first is the symbol replacing it. The third argument is 

used only when the symbol to be replaced is an identifier. It is the character string that 

forms the identifier. A spelling matching algorithm is used to decide if the string is close 

to the spelling of a keyword. If it is, the cost of the replacement is reduced to one. 
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There is a special cost called infinity. If the syntactic cost of a repair is infinite, 

that repair is never attempted. The only deletion for which infinity is returned is 

deletion of an end-of-file symbol. Some insertions can never be chosen as the final repair. 

For example, in Pascal, the symbol '=' is permitted in every context in which any 

relational operator other than 'in' is permitted. It is natural to prefer '=' over the other 

relational operators when testing insertions. Hence, there is no reason even to try 

inserting the other five relational operators. Therefore, to save time, the insertion costs 

of the other relational operators are infinity. The infinite cost has its greatest value for 

replacements. Most replacements should not be allowed under any circumstances. For 

example, it is unlikely anyone would ever accidently type the keyword procedure where 

he meant to type the symbol ':='. The current version of the Pascal auditor attempts 

too many unreasonable replacements, which wastes time and occasionally results in an 

unreasonable recovery. 

Some repairs are combinations of simpler repairs. For example, the Pascal auditor 

sometimes tries deleting two consecutive tokens. In such cases, the syntactic cost of the 

repair is the sum of the costs of the simpler repairs. 

Certain common errors are handled by error productions. The grammar for the 

Pascal auditor has been extended to allow declarations to appea~ in any order. Other 

error productions permit general type specifiers to appear wherever a type identifier or 

ordinal type can appear. Also, the grammar has been extended to allow an expression to 

appear in most contexts where a constant can appear. An exception was made in the 

case of the bounds of subranges because the error production for that case caused an 

LR(l) conflict. The semantic routines for error productions produce the error messages 

for the errors handled by those productions. 

8.4 The Repairs 

The Pascal auditor considers four types of repairs: deletions, insertions, replacements, 

and bracket repairs. Deletion consists of removing one or two tokens from the error 

lookahead buffer. The Pascal auditor first tries deleting the second symbol in the 

lookahead buffer and then tries deleting the first symbol in the buffer. If the error was 

detected semantically no further deletions are attempted. Otherwise, the Pascal auditor 

tries deleting the second and third tokens, and finally, it tries deleting the first and 

second tokens. The deletions are tested in this order because the Pascal auditor does 

LR(2) error checking. With LR(2) error checking, it is more likely that the second token 

in the buffer should be deleted than the first. The two token deletions are not tried for 

semantic errors because they are too likely to lead to inaccurate repairs. Consider the 

statement 

X:= 1 

where x has been declared to be a parameterless procedure. The semantic guard for the 

destination of an assignment causes the error recovery algorithm to be invoked. If the 

syntactic repair algorithm tries deleting the symbols ':=' and '1' simultaneously, it will 

find that the resulting program is both syntactically and semantically correct. It will, 

therefore, choose to apply that repair unless the costs of the deletions are set 

prohibitively high. However, in this case, it is better to leave the original text unchanged 

and report the semantic error. 
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Double deletions have proven to be important repairs for Pascal. It is a common 

error to include an empty pair of parentheses in subprogram headers and calls. Without 

the ability to delete both parentheses, the recovery algorithm would be forced to resort 

to panic mode. If the error is in a procedure or function header, applying panic mode 

could lead to many spurious errors later. 

The insertions considered by the Pascal auditor consist of inserting single tokens 

into the lookahead buffer. The tokens that it will try inserting are the elements of the 

LR(l) lookahead sets computed at the start of the syntactic repair algorithm (see the 

previous section). It first tries inserting tokens after the first token in the lookahead 

buffer. Next, it tries inserting tokens at the start of the lookahead buffer. 

The replacements consist of substituting a token for one of the tokens in the 

lookahead buffer. Replacements for the first and second symbols in the buffer are 

considered. The LR( 1) lookahead sets are used to restrict the replacements that are 

attempted to those that might be feasible. 

Bracket repair is a new type of repair. Consider the statement 

a(i) := k; 

where a is an array of integers, and i and j are integer variables. The likely error is that 

parentheses have been used in place of square brackets. The Burke-Fisher system 

responds to this error by replacing ':=' with ';', i.e., it converts the assignment 

statement into a pair of procedure statements. This repair is the natural choice for the 

Burke-Fisher algorithm because it makes no use of semantic data when selecting 

syntactic repairs and therefore is unable to take advantage of the fact that neither a nor 

j is the name of a procedure. However, Berkeley Pascal, which does know that a is an 

array variable and j is a variable, does little better. It reports that a procedure name 

was expected where a appears and that the statement is malformed. The reason 

Berkeley Pascal reports that it expects a procedure name is that, in Berkeley Pascal, it 

costs less to replace an array name with a procedure name than it does to replace a left 

parenthesis with a left square bracket. Moreover, even if the costs were revised, the 

results for this example would remain the same. When Berkeley Pascal tries replacing 

the left parenthesis with a left square bracket, it rejects the repair because of the error it 

detects upon reaching the right parenthesis. 

The best repair for a bracketing error often involves a pair of insertions or 

replacements. In the previous example, the left parenthesis must be replaced by a left 

square bracket, and the right parenthesis by a right square bracket. The bracket repairs 

done by the Pascal auditor consist of inserting a left bracket or replacing a symbol by a 

left bracket near the detection point of an error. Then, if a new syntactic error is 

detected during the forward move, the corresponding right bracket is used in insertions 

and replacements near the point of the new error. 

The left parenthesis ('('), the right parenthesis (')'), the left square bracket ('['), and 

the right square bracket (']') are the only symbols treated as brackets by the Pascal 

auditor. Other pairs, such as begin - end and repeat - until, are also brackets in the 

usual grammatical sense. However, users are far less likely to make mistakes with those 

brackets. For example, there is little chance of accidentally substituting repeat - until 

for begin - end. 

The algorithm for bracket repairs is more complex than those for the other repairs. 

In fact, the code for implementing bracket repairs is longer then the codes for the other 

repairs combined. The algorithm works as follows. For each left bracket, four repairs 
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are considered. The bracket can be inserted before the first token in the lookahead 

buffer, it can be inserted after that token, it can replace the first token in the buffer, or it 

can replace the second token. For each of those repairs, the follow sets are consulted to 

decide if the repair might be viable. If a repair is viable, a copy of the modified buffer is 

parsed to check for subsequent syntax errors. If no such error is found, the bracket 

repair algorithm does not give any further consideration to the repair, since it will 

already have been considered as a possible insertion or replacement. If a new syntax 

error is found, the copy of the lookahead buffer is further modified in an attempt to 

repair the second error. Attempts will be made to insert the corresponding right bracket 

immediately before the detection point of the second error, and also before the symbol 

preceding the detection point. Attempts will also be made to replace the symbols on 

either side of the detection point with the right bracket. Thus, as many as sixteen 

repairs will be considered for each bracket pair. As a heuristic, if a left bracket was 

inserted, the cost of inserting the right bracket is reduced, and if the left bracket 

replaced another token, the cost of replacing another token with the right bracket is 

reduced. ' 

The algorithm described does not always find the best repair for a bracketing error. 

Indeed, it does not always find a repair at all. Sometimes, the second error will not be 

detected until after the point where it actually occurred. Consider the statement 

a[i] := a(i + a[J1 

where a is an array of reals, and i and i are integers. The error here is two-fold. First, 

the left parenthesis should have been a left square bracket. Second, there should be a 

right square bracket between the second instance of i and the '+'. However, when the 

bracket repair algorithm tries replacing the left parenthesis with a left square bracket, it 

does not find a subsequent syntax error until it reaches the semicolon. Therefore, the 

second repair will consist of inserting a right square bracket immediately before the 

semicolon. This repair will, of course, lead to a semantic error since real expressions 

cannot be used as subscripts. An earlier version of the bracket repair algorithm avoided 

this problem. That version did not limit its attempts to fix the second error to changes 

made in the immediate context of the detection point of the second error. Instead, it 

tried replacements and insertions in every position between the first repair and the 

second error's detection point. Errors such as the one shown above posed no problem for 

that version of the bracket repair algorithm. However, it was dropped when it was 

discovered that the error recovery algorithm was spending about two-thirds of its time 

testing bracket repairs. The current algorithm spends only about one-tenth of its time 

testing bracket repairs and yet produces the same results for all bracketing errors that 

occur in the Ripley-Druseikis sample. 

8.5 Reporting Errors 

The output of the Pascal auditor is a listing of the input program with interspersed error 

messages. The nature of an error message depends on how the message was generated. 

Error messages produced by the local recovery algorithm indicate the changes made to 

the input text by the algorithm. The compiler writer must make provisions for 

producing error messages for semantic errors, error productions, and panic mode 

recoveries. Information matching locations in the input text with symbols involved in 

error messages can be obtained from the location stack. For panic mode recoveries, the 
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location stack entry for the error token is set so that its starting location is the start of 

the text skipped over during the recovery, and its ending location is the end of that text. 

The error messages produced by the Pascal auditor may be associated with either a 

single point in the program text or a contiguous region of the program. A error message 

associated with a single point in the program text is indicated by a caret pointing to that 

location. An error message associated with a region of the program is marked by angled 

brackets indicating the endpoints of the region with the space between the brackets filled 

by hyphens. If the region associated with an error message overlaps the location 

associated with another error message, the location markers associated with the inner 

error are given precedence. For example, suppose a Pascal program contains the 

statement 

X := [!f + 2] 

where x and y are real variables. Then the listing the Pascal auditor produces will 

include the following error report: 

:z: : = [y '+ 2] 
<-----<---» 

*** 3: e - incompatible assignment 
*** 9: e - set member type is not ordinal 

Every error message generated by the Pascal auditor is written to a temporary file 

called the error file. After analysis of a program has been completed, the error file is 

sorted so that the error messages appear in the order they are to appear in the listing. 

The error file and the input file are then rewound, and the listing is produced from them. 

8.6 Space and Time 

The Pascal auditor was written in C [KR78] on a Digital Equipment Corporation 

V AX-11/780t running Berkeley UNIX*. It accepts full ANSI Pascal [ANS83]. The 

grammar used in the implementation of the Pascal auditor is shown in Appendix A. The 

source code for the Pascal auditor is 18,567 lines long. The sizes of its major components 

are as follows: 

lexical analyzer 
grammar 
error handler 
semantic routines 

1205 lines 
1127 lines 
3697 lines 

11572 lines 

6% 
6% 

20% 
62% 

The remammg 6% of the source code consists of header files, the main routine, and 

utility routines. The compiled code (including tables) is about 120,000 bytes long. 

For error-free programs, the Pascal auditor is about as fast as Berkeley Pascal. The 

Pascal auditor analyzes a correct program in about two-thirds the time it takes the 

t VAX is a registered trademark or Digital Equipment Corporation. 

t UNIX is a registered trademark or Bell Laboratories. 
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Berkeley Pascal interpreter to analyze and produce interpretive code for the same 

program. Using the profiler gprof [GKM83], it was ascertained that, for error-free 

programs, the Berkeley Pascal interpreter spends about two-thirds of its time analyzing 

the programs; the rest of the time is spent in code generation. The profiler further 

showed that relative times the two systems spend in the various phases of analysis are 

quite different. Berkeley Pascal spends a higher percentage of its time parsing and 

performing lexical analysis. The Pascal auditor spends most of its time performing 

semantic analysis. One reason the Pascal auditer takes longer to perform semantic 

analysis is that the semantic routines must obey the restrictions described in Sections 5.3 

and 5.4. It is sometimes necessary to use less efficient codes for semantic analysis than 

could be used in the absence of those restrictions. However, the major reason semantic 

analysis takes longer appears to be the division of semantic routines into guards and 

actions that was discussed in Section 4.3. If the alternative scheme for implementing 

semantic routines that was described at the end of that section had been used, the time 

required to analyze correct programs would have been significantly less for the Pascal 

auditor than for Berkeley Pascal. 

It is hard to compare the speeds of error recovery systems. For a given program, 

the systems might choose different repairs for an error that occurs early in the program, 

which may affect further analysis of the program. To compare the speeds of the Pascal 

auditor and Berkeley Pascal, a special set of erroneous programs was developed. Those 

programs had the property that the two systems repaired each error in exactly the same 

way. In addition, a corrected version of each program was written to provide a control 

against which the extra time spent performing error recovery could be measured. 

Timings show that the Pascal auditor's error recovery algorithm is significantly 

slower than Berkeley Pascal's. The timings were done using the UNIX time command. 

The time command produces two times for a program: the user time and the system 

time. User time is the time spent in the user process, while system time is the time spent 

performing system commands. The timings for the Pascal auditor show that it spends 

about 0.09 seconds of user time for each error detected. Berkeley Pascal, on the other 

hand, spends only about 0.03 seconds of user time for each error. The system time spent 

by two algorithms is approximately equal; both spend about 0.02 seconds of system time 

for each error. Thus, the Pascal auditor takes more than twice as long to recover from 

an error as Berkeley Pascal. 

The Pascal auditor is slower than Berkeley Pascal for many reasons. One reason is 

that the Pascal auditor's error recovery codes are not as efficient as they could be. 

Efficiency was not a primary consideration in the design of the Pascal auditor. (Neither 

was it for Berkeley Pascal.) The original version of the Pascal auditor required about six 

times longer to recover from an error than does the current version. Many 

improvements have been made to that original version; however, other changes that 

might have further improved its efficiency were not implemented because they involved 

major revisions. Another reason the Pascal auditor is slower than Berkeley Pascal is that 

it considers more repairs for each error. The use of semantic information also 

contributes to the time spent in error recovery. For each repair found to be syntactically 

feasible, the repair algorithm performs a forward move that includes semantic evaluation. 

The time spent creating the appropriate environment for that forward move, doing the 

semantic actions, and then restoring the previous semantic environment takes much 

longer than a purely syntactic forward move. 

The timings produced one surprise. The correlation between the speed of the error 

recovery algorithm and the bound on the number of tokens considered during a forward 

move was found to be less than expected. In the original version of the Pascal auditor, 
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the bound on forward moves was 15 tokens. Reducing that bound to seven tokens 

reduced the time spent for each recovery by only about 10%. Not surprisingly, when the 

bound was reduced to seven, the quality of the recoveries produced by the error recovery 

algorithm suffered. However, the quality of the recoveries produced when the bound was 

15 tokens was not as good as when the bound was set in the range from 9 to 12 tokens. 

When the bound was 15 tokens, there were instances where errors that occurred later in 

the program adversely affected the costs assigned to the repairs being tested. In the 

current version of the Pascal auditor, the bound on the number of tokens used in a 

forward move is 12 tokens. 

The timings described above are biased in favor of Berkeley Pascal. Earlier timings 

showed that speed of Berkeley Pascal was less than double that of the Pascal auditor. 

Unlike the sample used in the timings described above, the sample used in those earlier 

timings contained programs for which different repairs were produced by the two 

algorithms. The Pascal auditor found viable repairs in many cases where Berkeley Pascal 

did not. When Berkeley Pascal or the Pascal auditor fails to find a repair for an error, it 

takes longer to recovery from the error because more potential repairs are tested. Also, 

the error recovery system must spend time executing its panic mode algorithm. Thus, 

the fact that the Pascal auditor usually tests more potential repairs than Berkeley Pascal 

is partially compensated for by the fact that it is more likely to find a repair. 

1 var a. b: array [1 .. 51 .. 10] of integer; 

*** 2: e - Missing Program Header 

*** 24: e - inserted ' J . 
2 i. j . k. 1: integer; 
3 begin 
4 3: i + j > k + 1 * 4 then go 1 else k is 2; 

*** 3: e - label 3 is undeclared 

*** 5: e - inserted 'if' 

*** 29: e - replaced 'go' with 'goto' 

*** 32: e - label 1 is undeclared 

*** 41: e - replaced 'is' with '·=' 
5 a 1.2 := b [ 3 * ( i+4. j*/k] 

*** 4: e - inserted ' [ J 

*** 8: e - inserted J] J 

*** 25: e - inserted ') J before J ' 
*** 28: e - deleted J /' 

*** 31: e - inserted J. J 

6 if i=1 then then goto 3; 

*** 15: e - deleted 'then' 
7 2: end. 

*** 1: e- label 2 is undeclared 

Figure 8.1 The Graham-Rhodes example 
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8.7 Examples of Use 

This section presents two examples of recoveries performed by the Pascal auditor. Other 

examples may be found in Appendices B, C, and D. The examples presented here were 

chosen because they are well-known examples from the literature. 

The example shown in Figure 8.1 is taken from the paper by Graham and Rhodes 

[GR75]. Variants of this example appear in [PD78], [GHJ79], and [BF82]. The text 

shown in Figure 8.1 is taken from a listing produced by the Pascal auditor. Each line of 

the source text is preceded by its line number. The lines prefixed by three asterisks are 

error messages. The number following the asterisks is the column number of the start of 

the region associated with the error message. 

The error messages produced for the Graham-Rhodes example are as good as those 

that an expert programmer checking the program for errors might be expected to 

produce. However, semantics affected the choice of repairs in only one case. The 

recovery algorithm would not have chosen to delete the slash('/') that appears in column 

28 of line 5 had semantic information been ignored. The cost of deleting the slash is 

greater than the cost of inserting an identifier between the star ('*') and the slash. 

Hence, if semantic information were ignored, the local recovery algorithm would have 

chosen to repair the error by inserting an identifier. That repair was not chosen because 

the expression in which the slash occurs is a subscript expression. The type of the 

subscript is known to be integer; however, in Pascal, the result type of the operator'/' is 

real. Therefore, simply inserting an identifier leads to a semantic error. 

1 program sillypascal(input, output); 
2 va.r 
3 mychar: char; 
4 begin 
5 read mychar; 

*** 7: e- inserted'(' 

*** 14: 
6 

e - inserted ')' before 
end. 

.. ' 

Figure 8.2 P. J. Brown's example 

Figure 8.2 shows the result of applying the Pascal auditor to P. J. Brown's example 

[Bro82, Bro83]. When this example is presented to the version of the Pascal auditor that 

ignores semantic information during error recovery, it recovers from the syntactic error 

by inserting a semicolon(';') between the procedure read and the variable mychar. As a 

result of that repair, two semantic errors are also reported. The message "missing 

parameter list" is given following the function read, and the variable mychar is flagged 

with the message "a variable appears where a procedure was expected." 

8.8 Comparisons 

The goal of this work has been to develop practical error recovery techniques that 

diagnose errors more accurately than do earlier techniques. To measure the success of 

this work, the recoveries produced by the Pascal auditor have been compared with those 



78 

produced by Berkeley Pascal [GHJ79] and the Burke-Fisher system [BF82]. Berkeley 

Pascal's error recovery system is perhaps the best system yet to be included in a 

production compiler. The Burke-Fisher error recovery system was developed as an 

enhancement of Berkeley Pascal's system. The Burke-Fisher system has been used in 

some experimental compilers. 

The major innovation of this work is the use of general static semantics to aid in 

error recovery. Testing the Pascal auditor against earlier error recovery systems 

provides evidence of the advantages of semantics-directed error recovery, but that 

evidence is muddied by other differences among the various systems. To provide clearer 

evidence of the benefits of using semantics-directed error recovery, a version of the Pascal 

auditor in which semantic information is ignored during error recovery has been created. 

The recoveries produced by that version of the Pascal auditor have been compared with 

the recoveries produced when semantic information is used. 

Some of the listings used in the comparisons are reproduced in Appendices B, C, 

and D. Appendix B contains the listings for every program in the test sample where the 

recoveries chosen by the version of the Pascal auditor that ignores semantic data differ 

from the recoveries chosen by the version of the Pascal auditor which uses semantics. 

Appendix C contains the listings for every program where the recoveries produced by 

Berkeley Pascal or the Burke-Fisher system are better than those produced by the Pascal 

auditor. Appendix D contains the listings for some of the programs for which the Pascal 

auditor outperforms Berkeley Pascal. 

The test sample used in the comparisons is a modified version of the Ripley

Druseikis sample [RD78]. The Ripley-Druseikis sample consists of 126 Pascal programs 

that demonstrate a variety of errors. Unfortunately, the programs contained in the 

original sample are incomplete. In particular, most declarations are missing. The 

programs in the modified sample include all necessary declarations. 

The comparison with Berkeley Pascal produced impressive results. The Pascal 

auditor produced better recoveries than did Berkeley Pascal for 43 of the programs in the 

test sample. The Pascal auditor's recoveries were inferior to those of Berkeley Pascal for 

only seven programs. 

Six of the cases where Berkeley Pascal produced better recoveries than the Pascal 

auditor did not involve semantics. Berkeley Pascal is sometimes able recover from an 

error by inserting two tokens. That capability accounts for two of the instances where 

Berkeley Pascal outperforms the Pascal auditor. Berkeley Pascal treats some multiple 

character symbols as sequences of tokens. In particular, the symbol ':=' is treated as the 

token ':' followed by the token '='. That feature accounts for three of those instances 

where Berkeley Pascal bests the Pascal auditor. Berkeley Pascal's lexical analyzer treats 

the symbol '!' as a special quote symbol. An error message is given for a string delimited 

by '!', but the lexical analyzer recognizes it to be a string. Treating '!' as a string quote 

accounts for one instance where Berkeley Pascal bests the Pascal auditor. 

The Pascal auditor could be modified to produce the same recoveries as Berkeley 

Pascal in the cases mentioned above. Berkeley Pascal's mechanism for inserting multiple 

tokens could be copied in the Pascal auditor. The Pascal auditor could also be modified 

to treat the symbol ':=' as two separate tokens and to treat the character '!' as a string 

quote. However, those changes probably are not desirable. Treating the symbol ':=' as 

two separate symbols causes bad recoveries for the examples in the Ripley-Druseikis 

sample as often as it allows good recoveries that could not have been performed 

otherwise. Furthermore, there are some errors for which treating ':=' as two symbols 

allows Berkeley Pascal to perform apparently strange recoveries. For example, consider 



the following listing produced by Berkeley Pascal: 

1 program p; 
2 var i: integer; 
3 begin 
4 8 := 0 

e ----------- --- Replaced '=' with a keyword goto 
5 end. 

E 4 - 8 is undefined 
E 4 - 0 is undefined 
In program p: 

w - variable i is neither used nor set 
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The likely error in this example is that the programmer wrote the digit 8 where he meant 

to put the variable i. The recovery produced by Berkeley Pascal seems more likely to 

confuse than inform most programmers. Treating the character '!' as a string quote 

without regard to the context in which it appears seems more likely to lead to poor 

recoveries than to good ones. 

There was one case where using semantics to assist in error recovery led to an 

inferior recovery. The program in that case was as follows: 

program p(input, output); 

var prcount, x: integer; 

begin 
99 prcount .- prcount; 

X 1 
end. 

It seems likely that the programmer intended that the integer 99 should be a label. 

However, because 99 was not declared to be a label, the Pascal auditor detects a semantic 

error when it tries inserting a colon between 99 and prcount. Therefore, it rejects that 

repair in favor of deleting the integer 99. Berkeley Pascal, the Burke-Fisher system, and 

the Pascal auditor with semantics disabled all patched this error by inserting a colon 

between 99 and prcount. Since the programmer probably intended to place a colon at 

that location, the recovery chosen by those systems is better than the one chosen by the 

Pascal auditor. There are no other programs in the Ripley-Druseikis sample where using 

semantic data causes an inferior recovery to be selected. A better example, which does 

not appear in the Ripley-Druseikis sample, would be if a goto-statement referring to the 

label 99 appeared following the text examined during the forward move. The same 

recovery would be produced for that example. 

Those instances where the Pascal auditor outperformed Berkeley Pascal were also 

analyzed. No one factor accounts for more than seven of those instances. The major 

causes for the improvement include 

1. The use of general static semantic information. Berkeley Pascal uses 

some semantic data during error recovery, but it does not take 

advantage of all of the static semantic information that is available. 

2. The difference in the weights assigned to semantic information. The 

cost of replacing one type of identifier with another in Berkeley 
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Pascal appears to be too low. 

3. The use of LR(2) error checking. Berkeley Pascal is sometimes 

unable to find the best recoveries because it has performed some 

erroneous reductions. 

4. The Pascal auditor's bracket repair capability. 

5. The use of the spelling matcher for keywords. 

6. A better panic mode algorithm. This result is surpr1smg since the 

panic mode algorithm used by Berkeley Pascal was hand tailored. 

The Pascal auditor outperformed the Burke-Fisher system for 31 programs of the 

test sample. However, the reason the Pascal auditor did that well was that Burke and 

Fisher did not use any error productions. Discounting those examples where the 

improvement was due to error productions, the Pascal auditor did better than the 

Burke-Fisher algorithm for 24 programs. There were only six programs for which the 

Burke-Fisher system produced better recoveries than did the Pascal auditor. 

The six programs for which the Burke-Fisher system produces better recoveries 

than does the Pascal auditor have been analyzed to determine the reasons for differing 

recoveries. Like Berkeley Pascal, the Burke-Fisher system is able to insert two tokens in 

special circumstances. That capability accounts for two of the cases where the Burke

Fisher system produces a better recovery than the Pascal auditor. The Burke-Fisher 

considers a repair to be viable after a very short forward move. In one program where 

there are two unrelated errors in close proximity, the Pascal auditor rejects all repairs 

because it detects a new error too close to the point of the repair, while the Burke-Fisher 

system finds a repair because of its shorter parse check. The Burke-Fisher system is able 

to delete terminal symbols that have been shifted onto the parse stack. That capability 

leads to a better repair for one program. The Burke-Fisher system is sometimes able to 

merge two adjacent tokens into a single token. In particular, for one of the programs in 

the test sample, it is able to merge the identifier go and the keyword to to produce the 

keyword goto. Finally, as was noted above, the Burke-Fisher system outperforms the 

Pascal auditor in one case where the use of semantic data leads to an inferior recovery. 

Most instances where the Pascal auditor outperforms the Burke-Fisher system stem 

from the use of semantic information. The Burke-Fisher system considers more types of 

repairs than either Berkeley Pascal or the Pascal auditor. However, the Burke-Fisher 

system uses less information to decide which of the potential repairs to apply. Therefore, 

it often chooses inferior repairs. Consider, for example, the statement 

if nonprime = 0 then numprime,x. := numprime(x) + 1; 

where numprime is an array of integers and x is an integer variable. The Burke-Fisher 

algorithm repairs the syntactic errors in this example by replacing the comma with a 

semicolon and inserting an identifier after the period. 

The final comparisons were between the Pascal auditor and the version of the 

Pascal auditor that ignores semantic information during error recovery. These 

comparisons are the best test of semantics-directed error recovery, since the results are 

not contaminated by other differences between the two systems. The listings produced 

by the two versions of the Pascal auditor for every program for which the recoveries 

differed are shown in Appendix B. There were 27 programs for which different recoveries 

were produced. The recoveries produced using semantics were better for 21 of those 
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programs. The recoveries produced while ignoring semantics were better in only one 

case. In the remaining 5 cases, the recoveries were different, but there was little 

difference in their quality. 
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Implementation Notes 

The preceding chapters dealt with the large issues involved in creating an error recovery 

system. However, much of the time spent writing the Pascal auditor was expended 

solving little problems. Many of those problems were of such a nature that they must 

have arisen and been solved for other error recovery systems. However, because the 

authors of those systems did not report their solutions, new solutions had to be developed 

from scratch. Solutions to some of the problems encountered while implementing the 

Pascal auditor are presented here as a guide to others. 

0.1 Error Messages for Insertions 

The Pascal auditor indicates the location of an insertion more clearly than either 

Berkeley Pascal or the Burke-Fisher system. All three systems use a single caret to mark 

the location of an insertion. Berkeley Pascal places the caret so that it points to the first 

character of the first token following the insertion. The Burke-Fisher system has the 

caret point to the last character of the last token preceding the insertion. For single 

character tokens, both schemes might cause confusion. For example, consider the 

following fragment of a listing produced by Berkeley Pascal 

7 begin 
8 p 
9 q 

e -------- --- Inserted 
10 end. 

'.' 

In this example, p and q are parameterless procedures. The likely error is that the 

semicolon that must follow p has been omitted. However, a naive user might believe that 

the error message meant that a semicolon was inserted after q. The Pascal auditor places 

the caret for an insertion so that it points to white space. The Pascal auditor's output 

for the previous example is 

7 begin 
8 p 

*** 4: e - inserted '.' 
9 q 

10 end. 

As this example shows, having the caret point to white space leaves no doubt where the 

insertion occurred. There are cases where there is no white space around the point of an 

insertion. To avoid ambiguities in those cases, the Pascal auditor's error message 

indicates which token the insertion preceded, as is illustrated by the following example: 

82 
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2 var a: array [1+10) of integer; 

*** 16: e- inserted ' .. /before '+' 

If the phrase "before '+ '" were not provided, a naive user might think that the dots were 

inserted after the '+ '. 
The placement of a caret indicating the location of an insertion depends on the 

token being inserted. If the token being inserted is a separator or a single character 

closing bracket, it is inserted at the first location following the token preceding the 

insertion. Otherwise, it is inserted at the first location preceding the token following the 

insertion. Thus, the rules regarding the placement of carets cause the locations indicated 

for the inserted tokens to conform to common coding conventions. 

9.2 The Lexical Analyzer 

The Pascal auditor's lexical analyzer is very fast. Its speed is one reason why the Pascal 

auditor is as fast as it is relative to Berkeley Pascal. There are several reasons for its 

speed. The routine for reading the input text uses the UNIX system call read directly, 

and the buffer size was chosen to match the system buffer size. Thus, the overheads 

associated with using the UNIX standard 1/0 library were avoided. To avoid 

unnecessary copying, tokens are represented by pointers into the input buffer whenever 

possible. Also, the lexical analyzer was coded in a style that avoids unnecessary 

procedure calls. 

The lexical analyzer's handling of semantic values can be improved. The semantic 

value of an identifier is the string that represents that identifier. The semantic action 

routines are responsible for looking up identifiers in the symbol table. Hence, when 

evaluating the semantics associated with a possible repair, the local recovery algorithm 

must look up the identifiers encountered during the forward move. The result is that the 

error recovery routines spend about 12% of their time looking up identifiers. If the 

semantic values of identifiers were made to be pointers to the associated symbol table 

entry, that time could be saved. 

Unmatched string quotes are among the hardest lexical errors to handle well. In 

Pascal, a string is not allowed to extend past the end of a line. Therefore, if a line 

contains an odd number of string quotes, there must be a lexical error. Many Pascal 

compilers check for unmatched quotes only at the end of a line. If there are unmatched 

quotes, a string is formed from the text from the last quotation mark to the end of the 

line (an implicit quote assumed to exist at the end of the line). The text absorbed into 

the string will often contain the tokens terminating the statement in which the quotation 

mark appears. Thus, this manner of handling unmatched quotes sometimes interferes 

with the analysis of the text on the following line. 

Some new heuristics for handling unmatched string quotes have been applied in the 

Pascal auditor. "Whenever a quotation mark is encountered, the number of quotation 

marks to the right of it on the same line are counted. If no other quotation marks are 

found, the original quotation mark is assumed to be unmatched. If an even number of 

quotation marks are found on the rest of the line, there must be an error. A check is 

made to see if the token preceding the original quotation mark can legally precede a 

string. If not, the quotation mark is assumed to be unmatched. An unmatched 

quotation mark is returned as an illegal token; no effort is made to construct a string 
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starting from it. This heuristic often allows the Pascal auditor to handle unmatched 

string quotes more gracefully than if the simpler seheme described above had been used. 

It is especially helpful is those circumstances where the programmer did not intend to 

write a string at all, but simply made a typographical error. 

The heuristic used by the Pascal auditor could be improved by checking if the token 

following a supposed string can legally follow a string. For example, consider the 

statement 

writeln(' x =, x, 'y = ', y) 

The apparent error is that a quotation mark is missing between the first equal sign and 

comma; that is, the first quotation mark is unmatched. The heuristic currently used by 

the Pascal auditor will cause it to decide that the last quotation mark is unmatched. If 
the token following the string were checked, then it would be clear that the first 
quotation is the one that is unmatched since the identifier y cannot immediately follow a 

string. Therefore, the lexical analyzer would return an illegal character token for the 

first quote. Eventually, the panic mode algorithm would report that the tokens between 

the open parenthesis and the first comma constitute a malformed expression. 

0.3 Assigning Costs to Syntactic Repairs 

The costs of syntactic repairs in the Pascal auditor were based on intuition and 

experimentation. The costs are small positive integers (see Section 8.3). Initially, 

uniform costs were assigned to each class of repair. The cost of insertions was 3, the cost 

of replacements was 5, and the cost of deletions was 7. Those costs were chosen because, 

for a sample of erroneous Pascal programs, insertions were the best repair most often, 

replacements next most often, and deletions least often. The costs were then refined for 

the test sample to eliminate undesirable recoveries. Experience gained while refining the 

costs showed that the best choice of costs for repairs often did not correspond to the 

relative frequencies that those repairs were optimal. 

For most errors, the relative costs of particular insertions and deletions have little 

impact on the recoveries. Suppose that an error has been detected. Suppose further that 

inserting or deleting a single token near the error's detection point eliminates all 

detectable syntax and semantic errors in the surrounding text. Then that repair is 

almost always as good a recovery as could be expected. Even when there are many 

possible insertions or deletions that could repair an error so that no further errors are 

discovered, there is usually little reason to prefer one of those repairs above the others. 

The costs assigned to replacements strongly affect the quality of recoveries. The 

costs of replacements should almost always be greater than the costs of insertions or 

deletions. In fact, most replacements should be prohibited. For example, there is an 

erroneous program for which Berkeley Pascal repairs an error in the program by 

replacing the operator '+' with the keyword label. The chosen repair subsequently 

causes a spurious semantic error to be reported. Worse than just being inaccurate, the 

repair looks foolish. There is almost no chance that someone would accidentally write 

'+' where he meant to write label. Experience indicates that initially all replacements 

should be assigned prohibitively high costs. The cost of a particular replacement should 

not be lowered until an example is found where that replacement is the best repair. In 

addition to preventing some seemingly foolish recoveries, banning most replacements 

reduces the number of repairs considered during error recovery, thereby making the 
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error recovery system faster. 

The cost assigned to a replacement usually should be greater than the cost of 

deleting the symbol being replaced and the cost of inserting the symbol replacing it. 

Berkeley Pascal's convention of setting the cost of the replacement equal to the sum of 

those other two costs seems a good idea. Errors for which the optimal repair is a 

replacement are common. Thus, it might seem to be a mistake to assign high costs to 

replacements. That notion is, however, incorrect. Replacements are usually the repair of 

choice only if there is no simpler repair that is syntactically and semantically viable. If 

inserting or deleting a single token repairs an error, then the chances are that that repair 

is better than any replacement. There are, naturally, some exceptions to this rule. For 

example, in Pascal, the cost of replacing a semicolon with a colon should be small, but 

the cost of deleting a semicolon should be large. 

Some special cases were found where the costs of some deletions should be lower 

than the costs of some insertions. In particular, it was found that the cost of deleting a 

right bracket should be lower than the cost of inserting the corresponding left bracket. 

Suppose the parser discovers an extra right bracket. The chance that the programmer 

intended to write another left bracket is probably about equal to the chance that he 

meant to write fewer right brackets. However, even if the error recovery system could 

determine that another left bracket should be inserted, it usually would still be unable to 

determine where to insert it. On the other hand, deleting the unmatched right bracket 

has a good chance of being the optimal repair. Thus, if an unmatched right bracket is 

found, the chance that deleting the right bracket corresponds to the programmer's intent 

is usually greater than the chance that any particular insertion of a left bracket 

corresponds to his intent. 

The costs of replacing an illegal character with legal tokens should depend on the 

particular character. Suppose an illegal character appears in a Pascal program. The cost 

of replacing that character by tokens represented by characters that are near it on most 

keyboards should be less than the cost of replacing it with tokens represented by 

characters that are far away from it. This idea was suggested before by Graham and 

Rhodes [Gra75], but does not appear to have ever been implemented. 

9.4 Recording Repairs 

Many error recovery systems test a variety of potential recoveries before deciding which 

recovery to apply. Therefore, it must be possible to keep track of which potential 

recovery is the best of those tested thus far. The Pascal auditor uses an ad hoc encoding 

for each type of recovery. A better alternative would be to use a generalized 

representation that could encode any potential repair. Note that any repair can be 

represented as some combination of deletions and insertions. Furthermore, the repair 

algorithms developed until now can affect only a few positions within the input text. 

Therefore, a general repair could be represented by a small vector whose elements 

represent some sequence of insertions and deletions. 

9.5 The Spelling Matcher 

The spelling matcher has proven to be a valuable component of the Pascal auditor. 

"While only a small percentage of recoveries are influenced by the spelling matcher, the 
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incorrect recoveries that would be generated for those cases if the spelling matcher were 

not used would seem outrageous to the naive user' For example, in one program in the 

Ripley-Druseikis sample, the keyword function is misspelled as "funtion." Normally, the 

Pascal auditor will replace the identifier "funtion" with the keyword function. 

However, if the spelling matcher is disabled, the Pascal auditor will replace "funtion" 

with the keyword procedure. 

The spelling matcher takes two input parameters: a source string and a target 

string. Both the source string and the target string are assumed to end with a null byte. 

The spelling matcher determines if the source string is a close enough match to the target 

string that it could safely be assumed to be a misspelling of the target string. The Pascal 

auditor uses the spelling matcher to decide if an identifier might be considered a 

misspelling of a keyword. 

The spelling matcher is much simpler than the spelling correctors used in compilers 

such as CUPL[MoriO]. A spelling corrector takes a string and trys to find the keyword 

or defined identifier which most closely matches the string. Thus, a spelling corrector 

must try to match the string with every keyword and every identifier in the symbol 

table. The Pascal auditor does not use a spelling corrector because the time and space 

overheads associated with the spelling correctors that appear in the literature were felt to 

be too great. 

The algorithm used by the spelling matcher is shown in Figure 9.1. The type string 

is a !-indexed array of characters. The strings are converted to lowercase because ANSI 

Pascal does not differentiate on the basis of case. The conversion for the target string is 

a wasted operation for the current Pascal auditor; the target strings passed to the 

spelling matcher never contain uppercase characters. The special cases are provided to 

allow for common substitutions for keywords that are not caught by the general 

algorithm. The Pascal auditor recognizes four special cases: "constant" matches the 

keyword const, "over" matches the keyword div, "go" matches the keyword goto, and 

"proc" matches the keyword procedure. 

The loop that forms the bulk of the algorithm counts the number of changes that 

must be made to the source string to make it match the target string. If that number is 

less than or equal to a limiting value, the two strings are considered close matches and so 

true is returned; otherwise, the algorithm returns false. The limiting value is set to one

third the length of the source string. The loop scans through the source and target 

strings checking if the corresponding characters are the same. Whenever it finds a 

mismatch, it performs a sequence of tests to decide how to continue. It tests for 

permutations, insertions, substitutions, and deletions, in that order. The order in which 

the tests are done is significant. The test for permutations must precede all other tests 

because the other tests can mask the presence of a permutation. 
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function spell( source, target: string): Boolean; 

begin 

end 

convert all uppercase characters in the source string to lowercase; 

convert all uppercase characters in the target string to lowercase; 

if the arguments form a special case then 
return true; 

source_ length := the length of the source string; 

target_ length := the length of the target string; 

limit := source_ length div 3; 

number_ of changes := 0; 
i := 1; 
j:= 1; 
while ( i source_length) and (j target_ length) do 

if source[i] = target[j] then 
begin i := i + 1; j := j + 1 end 

else 
begin 

end 

if number_of_changes =limit then 
return false; 

number_of_changes := number_of_changes + 1; 

if (source[i] = target[j + 1]) and (source[i + 1] = target[j]) then 

begin i := i + 2; j := j + 2 end 
else if source [ i + 1] = target [j] then 

begin i := i + 2; j := j + 1 end 
else if source [ i + 1] = target [j + 1] then 

begin i := i + 2; j := j + 2 end 
else 

j:= j+ 1 

if number_ of_ changes + abs( i - target_ length) < limit then 

return true 
else 

return false 

Figure 9.1 The spelling matcher 
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Future Work 

Experience with Bison and the Pascal auditor has revealed many lines for further 

research. Ideas for improving the error recovery techniques described in earlier chapters 

are discussed in those chapters. This chapter describes ideas for future work that lie 

outside the purview of earlier chapters. 

10.1 New Test Suites for Error Recovery 

The Ripley-Druseikis sample of erroneous Pascal programs [RD78J has been a valuable 

contribution to research in error recovery. By providing a standard set of test examples, 

it has made meaningful comparisons of diverse error recovery systems possible. However, 

the Ripley-Druseikis sample has become dated. 

The programs on which the Ripley-Druseikis sample was based were gathered at the 

University of Arizona computing center in the mid 1970's. At the time, that center was 

mainly a Fortran shop. Keypunches and batch processing were the rule of the day. 

Changes in programming environments over the years have, to some extent, altered the 

types of errors people make. For example, the Ripley-Druseikis sample includes 

programs where an error was corrected, but a copy of the line containing the error was 

left in the program. This type of error is common in a punched card environment (the 

user simply forgets to throw a bad card away). It is not common when programs are 

created using an interactive text editor. 

There are many types of errors that are not represented in the Ripley-Druseikis 

sample. Several features of Pascal are not used in any of the programs. No record type 

specifiers, case-statements, or with-statements appear in the sa.lij.ple. Presumably, the 

number of programs that contained those features fell below the threshold needed to be 

included. Also, since the sample was created for the analysis of syntactic errors, semantic 

errors, even those that result from syntactic causes, are not represented. 

Since the erroneous programs were gathered at a university, it may be inferred that 

the sample is representative of the types of errors made by student programmers. It 

seems unlikely that production programmers make the same types of errors as students; 

however, no evidence has been gathered to support that conjecture. A statistically 

weighted sample of erroneous programs written by production programmers could 

provide the evidence needed to assess that conjectni-e's validity. 

The fact that the only standard suite of erroneous programs is a sample of Pascal 

programs has led those who study error recovery to concentrate on error recovery for 

Pascal. Indeed, the fact that the Ripley-Druseikis sample was composed of Pascal 

programs was the main reason why the auditor used to test the error recovery techniques 

described herein was written for Pascal. The effectiveness of an error recovery technique 

may differ for various languages. Error samples for other languages could serve as 

vehicles for showing that an error recovery technique is robust. 
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Creating new error samples is a nontrivial task. To obtain a statistically valid 

sample, thousands, perhaps tens of thousands, of erroneous programs must be gathered. 

Each program must be inspected to determine the nature of the errors contained in it. 

Only then can a representative sample be extracted. Just obtaining an unbiased 

collection of erroneous programs can be difficult. A compiler could be modified to save 

copies of programs containing errors. However, because programmers are likely to 

compile several erroneous versions of a program before eliminating all detectable errors, a 

sample ,gathered in that way is likely to be biased. 

10.2 Error Productions 

As was noted in the introduction, error productions extend the syntax of the language to 

be analyzed. Error productions can be used to handle errors that could not otherwise be 

handled well. Examples of uses for error productions are given by Fischer and Mauney 

[FM80]. Error productions must be provided by the compiler writer. Obtaining good 

results from error productions requires a sharp sense of which error productions should 

be provided. As a rule, error productions should be used to relax nonintuitive syntactic 

restrictions. 

Error productions are useful, but they are also troublesome. Error productions may 

cause an error recovery system to mishandle some errors that they would otherwise 

handle well. For example, when Berkeley Pascal analyzes the declaration 

canst kp1 = k + 1; 

it produces 

4 canst kpl = k + 1; 
E -------------------- --- Expected '.' 

e -------------------- --- Replaced '+' with a keyword label 

The apparent error is that an expression has been used where a constant is required. 

The poor recovery is the result of error productions: one missing, and one present. If 

the grammar for Berkeley Pascal contained error productions pe~mitting expressions to 

appear in most contexts where constants are allowed, as does the Pascal auditor, the 

error would have been handled well. On the other hand, Berkeley Pascal does contain 

error productions allowing declarations to appear in any order. A stricter grammar 

would not permit a label declaration to follow a constant declaration, and so it would be 

impossible to substitute the keyword label for the operator '+'. 
Error productions may cause a grammar that was acceptable to a parser generator 

to cease being acceptable. Recall that in Section 8.3, it was mentioned that the bounds 

of a subrange could not be allowed to be expressions. If a parenthesized expression is 

allowed as the bound of a subrange, then the bound of a subrange can be syntactically 

equivalent to an enumerated type. For example, in the declaration 

type t = (red) .. green; 

it is impossible for the parser to determine that red is an expression and not the name of 

an enumeration constant until the token ' .. ' is read. \Vhile it is possible to write a 



90 

grammar that allows delaying the decision of whether to reduce red to an expression or 

an enumeration constant until after the two following tokens have been read, the natural 

grammar for that construction is LR(2). 

Another problem of error productions is illustrated by an idea suggested by Fischer 

and Mauney [FM80]. Consider the code fragment 

a[i] = a[j] then p(i, j); 

where a is an array variable. The likely error is that the keyword if has been deleted 

from the start of the line. However, the error will not be detected until the equals sign 

has been read. By that time, the parser will have performed shifts and perhaps 

reductions that will preclude inserting the keyword it at the start of the line. Therefore, 

unless the recovery algorithm can back up the parse, the best repair possible is to replace 

the operator '=' with the symbol ':=' and the keyword then with the symbol ';'. 

Fischer and Mauney suggest using error productions to deal with this type of error. 

They advocate adding error productions that permit parsing an if-statement without a 

leading if. As they note in their article, those error productions will permit the previous 

error to be handled well. What they fail to note is that the same productions will 

prevent a more common error from being handled well. For example, consider the 

statement 

a[i] = a[j]; 

The apparent error this time is that the symbol '=' appears where the symbol ':='was 

intended. This error is easy to handle if the parser recognizes the error before shifting 

over the equals sign. However, if the error productions suggested by Fischer and Mauney 

are used, an expression will be allowed to appear as the head of a statement. Therefore, 

the error will go undetected until the semicolon is read. Hence, an error recovery 

algorithm that cannot back up the parse will be unable to replace the symbol '=' with 

the symbol ':='. 

Thus, error productions are shown to be a valuable but flawed tool for error 

recovery. There may be ways of minimizing the harmful effects of error productions 

without reducing their usefulness. Error productions could be distinguished from normal 

productions. A parser generator might accept a strict grammar for a language together 

with a set of error productions. The error productions could either augment the rules of 

the strict grammar or supplant them. For example, the rules for the if-statement missing 

the leading if would augment the normal rules for statements, whereas the rules 

substituting expressions for constants would supplant the strict rules for constants. A 

parser for the strict grammar could be generated along with tables indicating how the 

parser would be different if the error productions were used. During normal compilation, 

the parser would recognize the strict form of the la,nguage. Thus, syntax errors would be 

detected as soon as possible. When an error was detected, the parser would be backed 

up to states in the parse stack that the parser generator indicates would be different if 

the error productions had been used. If parsing is able to continue without error until 

the full construct described by the error productions is recognized, normal parsing could 

then be resumed. Otherwise, the rest of the error recovery machinery would be invoked. 

The recovery algorithm could consider using error productions as part of a recovery, but 

be biased against such recoveries. The problem of the mechanism just described is its 

cost. The ability to back up the parse to those states that would be different if the error 

productions were used is not quite as expensive as a general backup facility, but it comes 
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close. Further, the information that would have to be stored to make the system work 

could require more table space than the parser itself. 

10.3 Improving the Parser Generator 

The parser generator Bison was designed to be a research tool. The parsers created by 

Bison incorporate only a few of the error handling features described herein, namely, 

LR(2) checking for syntax errors, semantic guards, and the location stack. The 

remaining error handling capabilities must be provided by the user. "When a Bison 

parser detects an error, it restores the parse stack if necessary and then calls a routine 

named yyrecover. Yyrecover must be supplied by the user. This arrangement was 

adopted because the error recovery routines were in a state of flux. The recovery 

routines would have taken much longer to develop had it been necessary to modify Bison 

to test the effects of a change. 

If Bison were to be made into a production parser generator, it should generate the 

error recovery routines automatically. Most compiler writers cannot be expected to 

know or care how error recovery is done, so long as it is done well. The recovery 

algorithm created in this work could easily be incorporated into a parser generator. The 

compiler writer still must supply some information to the recovery system. The cost 

functions !cost, Dcost, and Rcost are language dependent and so must be provided by 

the compiler writer. The compiler writer must also designate which tokens should be 

regarded as brackets and which should be regarded as separators. 

A parser generator for production use should possess capabilities that were not 

included in the current version of Bison. Aho, Johnson, and Ullman [AJU75] showed that 

smaller and faster parsers can be created for practical languages it ambiguous grammars 

are used. Bison incorporates some of their suggestions, but not all. In particular, their 

system for using operator precedence to resolve ambiguities has not been implemented. 

For Pascal, that feature is not important because there are few levels of precedence. 

Some other languages, such as C [KR78], have many levels of precedence. The parsers 

for those languages can be made more efficient by using ambiguous grammars and 

precedence declarations. 

Some texts on compiler writing, such as [AU77], indicate that LALR(l) grammars 

are suitable for describing the syntax of almost all programming languages. Experience 

gained while writing the Pascal grammar used by the Pascal auditor contradicts that 

notion. Even ignoring factors affecting error recovery, the rules describing declarations 

and record type specifiers must be carefully constructed to make the grammar LALR(l). 

However, both of those features can easily be described in an LALR(2) grammar. Other 

languages also contain constructs that can be described more naturally with LALR(2) 

grammars than with LALR(l) grammars. Wetherell [Wet81] describes such a construct 

in Ada. Extending Bison to handle LALR(2) grammars should not be difficult. Most of 

the information needed to compute the LALR(2) lookahead sets is present in the 

DeRemer-Pennella algorithm for computing LALR(l) lookahead sets [DP82]. 

Using a contorted grammar can hurt the quality of error recovery. Automatic error 

recovery techniques are heavily influenced by the grammar. Therefore, the structure of a 

grammar should correspond as closely as possible to the programmer's view of the 

syntactic structure of the language. "When the grammar deviates from that conceptual 

syntactic structure, recoveries that are not intuitively appealing may result. In the 

Pascal auditor, a few recoveries suffer because the syntax of declarations does not match 
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what a programmer would regard as the syntactic structure of declarations. If an 

LALR(2) grammar for declarations could have been used, those problems would not have 

arisen. On the other hand, the tortuous rules needed to describe record type specifiers do 

not appear to affect the recoveries chosen. 

10.4 Enhancing the Local Recovery Algorithm 

One reason the Pascal auditor generally diagnoses errors more accurately than does 

Berkeley Pascal is that it considers more potential repairs. Furthermore, in almost every 

instance where Berkeley Pascal or the Burke-Fisher system outperforms the Pascal 

auditor, it is because they find a repair that was not considered by the Pascal auditor. It 

seems likely, therefore, that the quality of repairs produced by the Pascal auditor could 

be improved by having it consider more types of repairs. 

An obvious way of increasing the number of repairs considered is to consider 

combinations of simple repairs. The repairs could even affect different parts of the input 

text. Some types of errors, particularly bracketing errors, cannot be accurately 

diagnosed unless such repairs are considered. An early version of the Pascal auditor 

considered combinations of two simple repairs. That version of the Pascal auditor 

generally found better repairs than the current one. However, the time needed to select 

a recovery was too great. The current repair algorithm typically considers a few 

hundred potential repairs for each error. The earlier version typically tested tens of 

thousands of potential repairs. That early algorithm screened out cases where a simple 

repair was obviously best; nonetheless, it was at least two order,s of magnitude slower 

than the current repair algorithm. 

Bracket repairs are the remnant of that earlier algorithm. The cost of bracket 

repairs is significant; the error recovery algorithm spents about 10% of its time 

considering bracket repairs. The time spent is worth the cost because a significant 

percentage of errors are diagnosed more accurately. Often where a bracket repair is 

applied, the recovery algorithm would have been invoked twice if bracket repairs were 

not done, once for the opening bracket and once for the closing bracket. 

Thus, combinations of repairs have been found to be too expensive to apply in 

general, but have been useful in a special case. It seems unlikely that a recovery 

algorithm that allows general combinations of repairs can be made practical. However, 

there may be other special combinations of repairs that are worth considering. 

The error recovery algorithm could both save time and produce better quality 

repairs if the length of each forward move could be varied appropriately. The current 

limit on the length of a forward move is twelve tokens. Most errors can be diagnosed 

accurately without looking at more than nine tokens. Therefore, the recovery algorithm 

typically wastes time performing unnecessarily long forward moves. On the other hand, 

bad repairs are sometimes selected because the repair algorithm does not look ahead far 

enough. Suppose a program contains a line of the form 

if i j + .. · + k then 

where "· · ·" represents an arithmetic subexpression, and i, j, and k are integer variables. 

An error will be detected between i and j since identifiers cannot be adjacent in Pascal. 

The Pascal auditor repairs the error by inserting an operator between i and j. If the 

subexpression is less than 8 tokens long, the local recovery algorithm will read the token 
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then while testing potential repairs. Therefore, it will know that the expression must be 

of type Boolean, and so it will insert the relational operator '='. Otherwise, it would 

insert the arithmetic operator '+'. Inserting the relational operator is clearly the better 

repair. However, in other instances, the expression could be followed by a relational 

operator and another arithmetic expression. In such a case, inserting the arithmetic 

operator would be better. The recovery algorithm cannot tell which case applies unless 

the forward move reaches the token then. 

The current repair algorithm is naive in its use of semantic costs. Experience has 

shown that the range of costs is unnecessarily large, while the range of effects is 

undesirably narrow. The costs assigned to semantic errors have little effect on the choice 

of repairs. Recall that the semantic cost of a potential repair is the sum of the costs 

returned by the semantic guards during the forward move done to evaluate the repair. 

The repair algorithm always chooses a repair whose semantic cost is zero if any such 

repair is found. For almost all of the programs in the sample of erroneous programs used 

to measure the performance of the Pascal auditor, there was at least one potential repair 

whose semantic cost was zero. Therefore, the costs assigned to semantic errors usually 

did not matter since if the semantic cost of a potential repair were little as one, it usually 

was great enough to preclude the choice of that repair. For this reason, Schmauch's 

simple scheme for semantics-directed error recovery (see Chapter 3) should usually be as 

effective as that used by the Pascal auditor. ' 

Semantic costs not only influence the choice of repairs, but can absolutely block the 

choice of a particular repair. If the semantic cost of a potential repair exceeds some limit 

value, the repair is automatically rejected. In retrospect, this mechanism could prevent 

some errors that would otherwise be easy to repair from being repaired. Suppose that a 

syntax error is closely followed by an unrelated semantic error whose semantic cost 

exceeds the limit value. Then all possible repairs of the syntax error will be rejected 

because of that unrelated error. No examples of this performance have yet been 

observed, but it could happen. 

The integration of semantic and syntactic costs could be handled better. It is not 

clear that potential repairs whose semantic cost is zero should always be favored over 

repairs whose semantic cost is positive. Instead of having a wide range of semantic costs 

representing the severity of the error, it might be better to group the errors into a small 

number of classes, each of which is treated differently. There might be four classes of 

semantic errors: trivial, normal, severe, and intolerable. A trivial semantic error would 

have the effect of adding a small amount to the syntactic cost of a repair. A repair for 

which only trivial semantic errors are found while testing the repair would be favored 

over all repairs for which more serious semantic errors are found, but would not 

necessarily be rejected if a repair for which no semantic errors are detected is found. 

Normal errors would be treated much the same as semantic errors are currently treated. 

A repair that leads to a severe semantic error might not be permitted if the associated 

syntactic cost were too great. Repairs that lead to intolerable errors would not be 

permitted at all. For example, in Pascal, a scalar variable cannot be followed by a left 

bracket. Therefore, inserting a left bracket following a scalar variable might lead to an 

intolerable semantic error. In addition to preventing some bad recoveries, treating some 

semantic errors as intolerable errors may improve efficiency by causing forward moves 

for bad repairs to be ended sooner than they might otherwise be ended. 

It should be noted that the current system of using semantic costs works well. 

Although the ideas mentioned above may sometimes lead to better repairs, the current 

semantics-directed repair algorithm produces good recoveries in most cases. The 

suggestions made above are the result of reflections on ways to improve the algorithm 
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rather than any demonstrated need for improvement. 

Multiple errors in a single context often lead to inferior recoveries. For example, 

there are two errors in the statement 

i = j + k) then ~oto 10 

The keyword if is missing from the start of the line, and an extra right parenthesis 

appears between k and the keyword then. The first error is detected as soon as the 

token '=' is read. At that point, the error repair algorithm is able to insert the keyword 

if at the start of the line. However, because of the second error, the forward move never 

reaches the keyword then. Therefore, the best repair is rejected in favor of a less 

desirable repair. 

The problems posed by multiple errors can easily be solved if efficiency is not a 

consideration. For each viable repair for the first error, the error repair algorithm could 

find the best repair for the second error after patching the first error. The best 

combination of repairs could be chosen based on the total cost of both repairs. Further 

research might reveal an efficient technique that produces similar results. 

10.5 Other Languages 

Perhaps the most important unanswered question about the error recovery techniques 

described herein is whether will they carry over to languages other than Pascal. Pascal is 

an almost ideal vehicle for error recovery. Its baroque syntax and restrictive semantic 

rules often lead to errors that are easily repaired. Moreover, the language is highly 

redundant. Therefore, a potential repair's viability can almost always be determined by 

examining the surrounding context. 

Shebanow is currently implementing a front end for a C compiler that incorporates 

advanced versions of the error recovery techniques described herein. Error recovery for 

C appears to be more difficult than for Pascal. C is much less redundant than Pascal. 

For example, in Pascal, if the keyword if were missing from the start of a conditional 

statement, the subsequent keyword then would signal its absence. Now consider the 

following erroneous code fragment from a C program 

(i == j) key = tab/e[i]; 

The error in this example is that the keyword if is missing at the start of the line. 

Because C is an expression language, no error is detected until the identifier key is read. 

At that point, the most likely repair would be to insert a semicolon(';') before key. Even 

if the recovery algorithm did decide that a keyword was missing from the start of the 

line, it would have to make an arbitrary choice between inserting if or while. 

The use of semantics during error recovery probably will not prove as advantageous 

for C as it did for Pascal. The type rules of C are much less strict than those of Pascal. 

Therefore, many semantic errors are undetectable. On the other hand, bracket repair 

should be even more effective in C than it was in Pascal. C contains more bracketed 

constructs than does Pascal and more types of brackets. 

Ada [DoD83] seems well suited for the error recovery techniques described herein. 

Certain of Ada's constructs cannot be identified by syntactic information alone. 

Therefore, semantics-directed error recovery may prove essential to avoiding frequent 
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misdiagnosis of errors. Further, Ada is highly redundant; even more so than Pascal. 

Implementing semantic-directed error recovery for Ada is complicated by Ada's 

rules for resolving overloading. The type of a component of an expression in general 

cannot be determined until after the entire expression has been parsed. Therefore, 

semantic errors will sometimes go undetected until long after the point in the text where 

the error was made. Therefore, an error recovery system for Ada may need to be able to 

backtrack the analysis of expressions. 

Semantics-directed error recovery could be applied to languages that do not require 

definition before use; however, the cost of doing so may be high. Compilers for languages 

that allow use before definition are usually multi-pass compilers. Implementing 

semantics-directed error recovery for such a language may require an additional pass that 

precedes parsing. That pass would determine the block structure of the program and 

process all recognizable declarations, but it would not parse statements and expressions. 

Koster [Kos73] has reported some work along these lines. Semantics-directed error 

recovery can then be done while the program text is parsed, since the necessary semantic 

information will be available. 

An implementation such as that outlined above suffers from two problems. First, 

the global bracketing structure of the program will have to be parsed without the benefit 

of semantics-directed error recovery. This is not a great disadvantage, since, in most 

languages, the types of semantic information available during semantics-directed error 

recovery would have little effect on the choice of recoveries. The other problem is that a 

declaration may be missed by the earlier pass because of an error. The error may not be 

discovered until after other errors have been repaired based on faulty information. The 

error recovery system would then have to back out of any actions done as a result of 

those repairs. Any scheme for providing that type of capability is likely to be too slow to 

be practical. 
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Conclusions 

The major result of this work was the development of practical techniques for applying 

general static semantic information to assist in recovering from syntactic errors. This 

result was achieved by extending the Graham-Haley-Joyerror recovery algorithm to take 

semantic costs into account when selecting a repair. 

The main obstacle to the creation of a system for applying semantics to error 

recovery was the need to be able to reverse the effects of semantic actions. To be able to 

determine the semantic cost of a repair, semantic checking must be done in tandem with 

parsing. However, semantic checking involves performing the semantic actions associated 

with the syntactic constructs being recognized. Since performing semantic actions affects 

the state of compilation, the effects of semantic actions performed while testing potential 

repairs that are rejected must be negated so that compilation can continue normally after 

recovering from an error. 

No practical solution to the problem of negating the effects of semantic actions 

performed by conventional compilers was found. Therefore, it was necessary to 

formulate a restricted model of compilation that was suited to undoing those effects. It 

was found that the LL- and LR-attributed grammars constituted just such a model. 

However, currently, compilers based on those types of attribute grammars are too slow to 

be practical even for normal compilation. Therefore, a new model of compilation was 

formulated. The new model consists of synthesized attributes together with a symbol 

table that allows the effects of symbol table operations to be undone. Two symbol table 

organizations suited for use in such a model were developed. 

Another contribution of this work concerned methods for avoiding the deleterious 

effects of reductions performed because of erroneous input. The methods included 

general backtracking, suppressing default reductions, LR( 1) pretesting, stack restoration, 

and limited backtracking. LR(l) pretesting and limited backtracking are new techniques 

developed during this work. General backtracking, suppressing default reductions, and 

stack restoration were first suggested by others. Comparisons of the various methods 

showed that limited backtracking was the best method for use with semantic-directed 

error recovery. 

The final contribution of this work was a new panic mode recovery technique for 

use with LR parsers. The new technique is largely a synthesis of existing techniques. It 

is essentially an adaptation of Hartmann's panic mode technique for recursive descent 

parsers [Har77]. Hartmann's technique depends on knowing the set of nonterminal 

symbols currently involved in the derivation being produced. A close approximation to 

that information for bottom-up parsers is provided by Sippu and Soisalon-Soininen's 

concept of a feasible reduction goal [SS83]. The new technique incorporates the concept 

of feasible reduction goals into a panic mode algorithm for LR parsers that is closely 

related to Hartmann's technique. 

The goal of this work was to develop better techniques for error diagnosis. 

Comparisons with two of the best existing error recovery systems, Berkeley Pascal 

[GHJ79] and the Burke-Fisher system [BF82], show that that goal has been achieve-d. 
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Further, timings demonstrate that the execution time overheads associated with the new 

techniques are reasonable. The Pascal auditor analyzes error-free programs at about the 

same speed as Berkeley Pascal. On the other hand, the Pascal auditor takes longer to 

recover from an error than does Berkeley Pascal. On average, it is from two to three 

times slower. Nonetheless, the new system is fast enough to be practical. "When running 

on a V AX.-11/780, the Pascal auditor typically requires less than one-tenth of a second to 

recover from an error. 

The main drawbacks of the new error recovery techniques are their space 

requirements and the difficulty of applying them. The code and tables for the Pascal 

auditor occupy about 12% more space than the translator for the Berkeley Pascal 

interpreter. It the Pascal auditor were extended to generate code similar to that 

produced by the translator for Berkeley Pascal, it would be at least 50% larger than that 

translator. Also, the new symbol table organization requires more space than would be 

needed by a conventional compiler. The greater space requirements are probably 

irrelevant for major computing systems. They may, however, be an obstacle to use of 

the new techniques in compilers for computers with limited address spaces. 

The difficulty of applying the new techniques is likely to be an impediment to their 

use. "When a conventional compiler detects an error during semantic analysis, it simply 

produces an error message. The semantics-directed error repair algorithm requires the 

compiler writer to provide additional information about semantic errors. The semantic 

routines must indicate which errors should cause the error recovery algorithm to be 

invoked, and they must assign costs to each error. To fulfill these requirements, the 

semantic routines must do a more detailed error analysis than is done by the semantic 

routines of conventional compilers. Further, the restrictions prohibiting semantic actions 

from altering existing semantic attributes or global variables outside of the symbol table 

sometimes force the compiler writer to use algorithms or data structures for semantic 

analysis that he would not normally choose. 

The techniques for applying general static semantic information to syntactic error 

recovery are the culmination of one line of research into error recovery. The error 

recovery systems of Feyock and Lazarus [FL76J and Graham, Haley, and Joy [GHJ79J 

were able to improve on earlier systems by using some semantic data to help detect and 

recover from syntax errors. The error recovery techniques described herein carry that 

idea to its practical limits. All static semantic information that would normally be 

produced by a compiler is used by the new techniques. The techniques could be extended 

to find and make use of information not needed during normal compilation, and better 

recoveries could sometimes be done using that additional data. However, the proportion 

of cases where such information would be useful is small, and so the time spent gathering 

it will usually be wasted. 
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Appendix A 

The Grammar for the Pascal Auditor 

This appendix contains a listing of the grammar used in the implementation of the Pascal 

auditor. For ease of reference, each rule is labeled by a distinct rule number. The names 

of terminal symbols are written in uppercase, and the names of nonterminal symbols 

appear in lower case. Some of the reasons for using this particular grammar are given 

below. 

The names of most terminal symbols clearly indicate which symbols they denote. 

For example, each name that denotes a keyword has the same spelling as the keyword 

that it denotes. The meanings of a few names are not as obvious. Those names and 

their meanings are as follows: 

ID an identifier 

INT an unsigned integer constant 

REAL an unsigned real constant 

STRING a character string constant 

DOT a period I I 

UPTO the range symbol I I 

ARROW a caret '., 
BECOMES the assignment sym hoi '·-' .-

LPAR a left parenthesis '(' 
RPAR a right parenthesis ')' 
LBRAK a left bracket '[' 
RBRAK a right bracket 'I' 

In addition, there are two special tokens, ERROR and FORWARD, which are not a part 

of the language. The Pascal auditor's lexical analyzer never returns either of those 

tokens. ERROR is the error token recognized by the Pascal auditor's panic mode 

algorithm (see Section 7.3). FORWARD is a pseudo-keyword. In ANSI Pascal [ANS83], 

the symbol "forward" is an identifier. However, it is distinguished from other identifiers 

in that it may appear as a forward directive. The special token FORWARD is used to 

allow the spelling matcher to replace an identifier with a forward directive. The special 

token is needed because the spelling matcher tries to match identifiers with keywords but 

does not try to match identifiers with other identifiers. 

Rules 2, 129, and 141 were included to prevent the panic mode algorithm from 

performing certain bad recoveries. Note that these rules are simple chain rules whose 

elimination would in no way affect the language defined by the grammar. However, 

before these rules were added, whenever the parser encountered a declaration with the 

statement part of a block, the panic mode algorithm would discard the preceding portion 

of the statement part or the block and back up to the point where it could begin 

processing new declarations. This action would "Sometimes throw the parser off the track 
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so that many spurious errors would be detected, and it would sometimes cause the 

nesting level of the symbol table to be altered. It is interesting to note that Berkeley 

Pascal suffers from similar problems. · 

The rules defining the nonterminal symbol newtype contain some notable features. 

Rule 16 is the rule where the nonterminal symbol konst which defines a constant could 

not be replaced with the nonterminal symbol expr because an LR(1) conflict would result 

(see Sections 8.3 and 10.2). The nonterminal symbol closer that appears on the rhs of 

rule 18 derives the empty string. It is used to close the scope that is opened when the 

start of a record type specifier is recognized (see rule 36). Rules 19 and 20 are error 

productions that allow general types to appear in contexts where the strict definition of 

the language permits only restricted subclasses 'of types. Rule 22 is also an error 

production. It permits a general type specifier to appear following a caret. ANSI Pascal 

requires the type specifier following a caret to be a type identifier. 

Rules 36 through 55 define the syntax of a record type specifier. The tortuous 

definition given was not chosen because of any considerations regarding error recovery. 

Rather, it was the simplest definition found that did not cause an LALR(1) conflict. A 

simpler definition could have been used if either ANSI Pascal had defined the syntax of 

record type specifiers slightly differently or if an LALR(2) parser generator had been 

available. Rule 55 is an error production that permits a general type specifier to appear 

where the strict language would require a type identifier. 

Rules 7 4 and 91 - 101 define the syntax of a parameterized procedure statement. 

The rules had to be factored in this way to permit the declaration of the procedure 

identifier to be percolated up to the parameter expressions so that their types could be 

checked as they were recognized. If the semantic routines of the Pascal auditor were 

allowed to use inherited attributes, a more natural syntax could have been used (see 

Section 5.3). 

Rules 125 and 126 define control symbols for changing the nesting level. The 

semantic routine for the nonterminal symbol opener increases the nesting level by one. 

The semantic routine for the nonterminal symbol closer pops the current scope. 

Rules 133 is an error production that allows a return type to be specified in a 

procedure header. The nonterminal symbol prcerr is a control symbol whose only 

function is to signal that the error recovery algorithm should be invoked. The reason the 

error recovery algorithm is invoked before the error production can be applied is to allow 

for the possibility that the tokens that appeared to form a return type specification for 

the procedure are really the result of some other error. 

Rules 202 through 217 have been factored in a way that allows information about 

the name that appears at the left of an Ivai to be made available to the semantic routines 

for the components of the Ivai. Again, if inherited attributes could have been used, this 

syntax could have been simplified. 
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I 
I 

I 

1 

2 

3 
4 

5 
6 

7 
8 

9 
10 

11 
12 
13 

14 

15 
16 
17 
18 
19 
20 
21 
22 

23 
24 

25 
26 
27 
28 
29 
30 
31 

program 

gbldcls 

pgmdcls 

pgmhead 

propopt 

propars 

type 

typname 

newtype 

vnames 

konst 

gbldcls block DOT 

pgmdcls 

pgmhead 
pgmdcls del 

PROGRAM ID propopt SEMICOLON 
PROGRAM ERROR 

LPAR propars RPAR 

ID 
propars COMMA ID 

typname 
newtype 
ERROR 

ID 

LPAR vnames RPAR 
konst UPTO konst 
packopt ARRAY LBRAK indxtys RBRAK OF type 
record closer 
packopt SET OF type 
packopt FILE OF type 
ARROW ID 
ARROW newt yp e 

ID 
vnames COMMA ID 

!NT 
STRING 
name 
PLUS !NT 
MINUS !NT 
PLUS name 
MINUS name 
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32 packopt 
33 PACKED 

34 indxtys type 
35 indxtys COMMA type 

36 record packopt RECORD opener fldlist END 

37 fldlist fixdhead 
38 fixdpart 
39 varipart 
40 variend 

41 fixdhead: 
42 I fixdpart SEMICOLON 

43 fixdpart: fixdhead !names COLON type 

44 !names ID 
45 !names COMMA ID 

46 varihead: fixdhead CASE selector OF 
47 I variend 

48 varilist: varihead konst 
49 I varilist COMMA konst 

50 varipart: varilist COLON LPAR fldlist RPAR 

51 variend : varipart SEMICOLON 

52 selector: seltype 
53 I ID COLON seltype 

54 seltype typname 
55 newtype 

56 block BEGIN stmts END 

57 name ID 



58 
59 
60 
61 
62 
63 
64 

65 
66 

67 
68 

69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 

84 

85 
86 

87 
88 

89 
90 

91 
92 
93 

del 

stmts 

stmt 

labels 

usta.t 

erropt 

dest 

ca.llO 

la.beldcl 
constdcl 
typedcl 
va.rdcl 
procdcl 
fnctdcl 
ERROR 

stmt 
stmts SEMICOLON stmt 

labels usta.t 
usta.t 

INT COLON 
labels INT COLON 

dest BECOMES expr 
na.me 
callO RPAR 
erropt GOTO INT 
erropt BEGIN stmts END 
erropt IF pred THEN stmt 
erropt IF pred THEN stmt ELSE stmt 
erropt CASE ca.selist END 
erropt CASE caselist SEMICOLON END 
erropt REPEAT stmts UNTIL pred 
erropt WHILE pred DO stmt 
erropt FOR forva.r BECOMES forexpr TO forexpr 
DO stmt 
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erropt FOR forva.r BECOMES forexpr DOWNTO forexpr 
DO stmt 
erropt WITH opener withlist DO stmt closer 
ERROR 

ERROR 

na.me 
lva.l 

call2 
ca.ll4 
ca.116 
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94 call1 prname LPAR 
95 callO COMMA 

96 call2 call1 expr 

97 call3 call2 

98 call4 call3 COLON expr 

99 callS call4 

100 cal16 callS COLON expr 

101 prname name 

102 pred expr 

103 case list: casehead COLON stmt 

104 casehead: expr OF konst 
105 I caselist SEMICOLON konst 
106 I casehead COMMA konst 

107 forvar name 

108 forexpr expr 

109 withlist: recval 
110 I withlist COMMA recval 

111 labeldcl: LABEL lablist SEMICOLON 

112 lab list INT 
113 lablist COMMA INT 

114 constdcl: CONST consteqv SEMICOLON 
115 I constdcl consteqv SEMICOLON 



115 consteqv: ID EQ expr 

117 typedcl TYP~ typeeqv SEMICOLON 
118 typedcl typeeqv SEMICOLON 

119 typeeqv ID EQ type 

120 vardcl VAR varcore SEMICOLON 
121 vardcl varcore SEMICOLON 

122 varcore : idlist COLON type 

123 idlist ID 
124 idlist COMMA ID 

125 opener 

125 closer 

127 
128 

129 

130 
131 

132 
133 
134 
135 

procdcl 

plcdcls 

prcdcls 

prchead 

135 prcerr 

137 prcret 

138 pid 

plcdcls block SEMICOLON closer 
prchead SEMICOLON dirctiv SEMICOLON 

prcdcls 

prchead SEMICOLON 
prcdcls del 

PROCEDURE pid paropt 
PROCEDURE pid paropt prcerr prcret 
PROCEDURE ERROR 
PROCEDURE pid ERROR 

COLON type 

ID 
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139 fnctdcl flcdcls block SEMICOLON closer 
140 fnchead SEMICOLON dirctiv SEMICOLON 

141 flcdcls fncdcls 

142 fncdcls fnchead SEMICOLON 
143 FUNCTION fid SEMICOLON 
144 fncdcls del 

145 fnchead FUNCTION fid paropt COLON restype 
146 FUNCTION fid parpack 
147 FUNCTION ERROR 
148 FUNCTION fid ERROR 

149 fid ID 

150 restype typname 
151 newtype 

152 dirctiv ID 
153 FORWARD 

154 paropt 
155 parpack 

156 parpack LPAR opener pars RPAR closer 
157 LPAR opener ERROR closer RPAR 

158 pars par 
159 pars SEMICOLON par 

160 par parids COLON partype 
161 VAR parids COLON partype 
162 FUNCTION ffid paropt COLON restype 
163 PROCEDURE fpid paropt 

164 par ids ID 
165 parids COMMA ID 

166 partype typname 
167 newtype 
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168 Hid ID 

169 fpid ID 

170 expr sexpr 
171 sexpr EQ sexpr 
172 sexpr NE sexpr 
173 sexpr LT sexpr 
174 sexpr GT sexpr 
175 sexpr LE sexpr 
176 sexpr GE sexpr 
177 sexpr IN sexpr 
178 ERROR 

179 sexpr term 
180 PLUS term 
181 MINUS term 
182 sexpr PLUS term 
183 sexpr MINUS term 
184 sexpr OR term 

185 term factor 
186 term STAR factor 
187 term SLASH factor 
188 term DIV factor 
189 term MOD factor 
190 term AND factor 

191 factor name 
192 lval 
193 INT 
194 REAL 
195 STRING 

\.. 196 NIL 
197 fncall 
198 LBRAK RBRAK 
199 LBRAK members RBRAK 
200 LPAR expr RPAR 
201 NOT factor 

... 
202 lval re cval DOT ID 
203 ptrval ARROW 
204 subhead RBRAK 

' 205 recval name 
206 lval 
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207 ptrval na.me 
208 lval 

209 subhead arrval LBRAK expr 
210 subhead COMMA expr 

211 arrval na.me 
212 lval 

213 fncall fnpart RPAR 

214 fnpart fnhead expr 

215 fnhead fnna.me LPAR 
216 fnpart COMMA 

217 fnna.me na.me 

218 members expr 
219 expr UPTO expr 
220 members COMMA expr 
221 members COMMA expr UPTO expr 



Appendix B 

Recoveries Produced with and without Semantics 

Although comparing the recoveries produced by the Pascal auditor with those produced 

by Berkeley Pascal and the Burke-Fisher system yields impressive results, those 

comparisons do not clearly demonstrate the advantages of semantics-directed error 

recovery. The differences in the recoveries produced by those systems are often due to 

factors that are not directly related to the use of semantics. The best test of the benefits 

of using semantic data to aid in error recovery lies in comparing the recoveries produced 

by the same error recovery system with and without semantics. To this end, the Pascal 

auditor has been used to produce recoveries for the Ripley-Druseikis test suite both with 

semantics enabled and with semantics disabled. Different recoveries were generated for 

27 of the 126 programs in the test suite. This appendix contains the listings produced for 

those programs where the recoveries differed. The n.umbers used to identify programs 

are the numbers of their relative positions in the test sample. 
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*** 

1 program p005(input, output); 
2 function getelement(var x. 1nteger); boolean; 

38: 
3 
4 
5 
6 
7 
8 

e - replaced ';' with 
var q: integer; 

begin 
X :: 1 

end; 
begin 
end. 

.. ' 

The listing produced for program 5 with semantics enabled 

1 
2 

*** 37: 

*** 40: 
3 

*** 5: 
4 
5 

*** 5: 
6 

*** 3: 
7 
8 

program p005(input. output); 
function getelement(var x: integer); boolean; 

e - missing return type specification 
e - unknown directive - treated as forward 

var q: integer; 

e - variable declarations must precede function declarations 
begin 

X := 1 

e - •x• is undefined 
end; 

e - deleted 'end' 
begin 
end. 

*** 3: e - inserted 'end' before '.' 

The listing produced for program 5 with semantics disabled 



\. 

.... 

1 program p011(input. output); 
2 var X, nonprime: integer; 
3 numprime: array [1 .. 10] of integer; 
4 begin 
5 if nonprime = 0 then numprime,x. - numprime (x) 

*** 32: e - replaced • • with . [. 

*** 34: e - replaced • • with . ] . 
*** 47: e - replaced . (. with . [ . 
*** 49: e - replaced . ) . with . ] . 

6 X - 1 
7 end. 

The listing produced for program 11 with semantics enabled 

1 
2 
3 
4 

program p011(input. output); 
var x, nonprime: integer; 

numprime: array [1 .. 10] of integer; 
begin 

+ 1; 

5 if nonprime = 0 then numprime,x. - numprime(x) + 1; 

*** 
*** 
*** 

6 
7 

32: 
34: 
39: 

e- replaced '.'with '[' 
e - replaced '.' with ']' 
e - a variable appears where a function was expected 

X - 1 
end. 

The listing produced for program 11 with semantics disabled 
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1 program p023(input. output); 
2 var m. x: integer; 
3 ffa.ct: real; 
4 function fa.ct(n: integer) : integer; 
5 begin 
6 fact - 1 
7 end; 
8 function power(k. y: integer) : integer; 
9 begin 

10 power - 1 
11 end; 
12 begin 
13 ffa.ct• (power (m. x) * exp(-m)) div (fa.ct(x)); 

*** 8: e - replaced 'I' with '·=' 
14 X - 1 
15 end. 

The listing produced for program 23 with semantics enabled 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

*** 3: 
*** 8: 

*** 31: 
*** 46: 

14 
15 

program p023(input. output); 
va.r m. x: integer; 

ffa.ct: real; 
function fa.ct(n: integer): integer; 

begin 
fact := 1 

end; 
function power(k. y: integer): integer; 

begin 
power - 1 

end; 
begin 

ffa.ct•(power(m. x) * exp(-m)) div (fa.ct(x)); 

e - a. variable appears where a. procedure was expected 
e- deleted ' 1 ' 

e - deleted ')' 
e- inserted')' before '·' 

X - 1 
end. 

The listing produced for program 23 with semantics disabled 



..... 

1 program p024(input. output); 
2 constant pi = 3.14159: real; 

*** 3: e - replaced 'constant' with 'canst' 
*** 24: e - deleted '.' 
*** 26: e - deleted 'real' 

3 var x: integer; 
4 begin 
5 X - 1 
6 end. 

The listing produced for program 24 with semantics enabled 

1 
2 

*** 3: 
*** 17: 
*** 24: 
*** 26: 

3 
4 
5 
6 

program p024(input. output); 
constant pi= 3.14159: real; 

<-----------> 
e - replaced 'constant' with 'canst' 
e - expression replaced by a constant 
e - replaced ':' with '+' 

e - type name appears where an expression was expected 
var x: integer; 

begin 
X := 1 

end. 

The listing produced for program 24 with semantics disabled 
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1 program p027(input, output); 
2 const maxrelations = 2; 
3 var x: integer; 
4 prtlrdrdata: array [1 .. 2*maxrelations] of integer; 

*** 31: e - deleted '*' 
*** 32: e - deleted 'maxrelations' 

5 begin 
6 X - 1 
7 end. 

The listing produced for program 27 with semantics enabled 

1 program p027(input, output); 
2 const maxrelations = 2; 
3 var x· integer; 
4 prtlrdrdata: array [1 .. 2*maxrelations] of integer; 

*** 31: 
*** 32: 

5 
6 
7 

e- replaced'*' with',' 
e - a constant appears where a type name was expected 
begin 

X := 1 
end. 

The listing produced for program 27 with semantics disabled 
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1 program p031(input. output); 
2 va.r x. loc: integer; 
3 function getelement(x: integer) : boolean; 
4 begin 
5 getelement - true; 
6 end; 
7 begin 
8 if no 

*** 6: e - deleted 'no' 
9 if not getelement(lQc) then x - 1 

*** 3: e - deleted 'if' 
10 end. 

The listing produced for program 31 with semantics enabled 

1 program p031(input. output); 
2 var x. loc: integer; 
3 function getelement(x: integer) : boolean; 
4 begin 
5 getelement - true; 
6 end; 
7 begin 
8 if no 

*** 6: e - •no• is undefined 
9 if not getelement(loc) then x - 1 

*** 2: e - inserted 'then' 
10 end. 

The listing produced for program 31 with semantics disabled 
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1 program p033(input. output); 
2 var x. sc, numeles: integer; 
3 begin 
4 sc := numeles+1]; 

*** 18: 
5 

e- deleted']' 
X := 1 

6 end. 

The listing produced for program 33 with semantics enabled 

1 
2 
3 
4 

*** 
*** 

5 
6 

16: 
16: 

program p033(input, output); 
var x. sc, numeles: integer; 

begin 
sc := numeles+1]; 

e- inserted '['before '1' 
e - the operands of '+' are not compatible 

X - 1 
end. 

The listing produced for program 33 with semantics disabled 



1 program p035(input, output); 
2 canst listsize = 10; 
3 var x : integer; 
4 procedure intlkdlst(size: integer); 
5 begin 
6 end; 
7 begin 
8 intlkdlst[listsize]; 

*** 12: 
*** 21: 

9 
10 

e - replaced 
e - replaced 

X - 1 
end. 

. [. with 
']. with 

. (. . ) . 

The listing produced for program 35 with semantics enabled 

1 program p035(input, output); 
2 canst listsize = 10; 
3 var x : integer; 
4 procedure intlkdlst(size: integer); 
5 begin 
6 end; 
7 begin 
8 intlkdlst[listsize]; 

*** 3: 
*** 22: 

9 

e - replaced procedure with variable 
e - deleted '· ' 

X := 1 

*** 3: e - deleted 'x' 
10 end. 

The listing produced for program 35 with semantics disabled 
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1 program p043(input. output); 
2 var max. norel· integer; 
3 x: array [1 .. 2. 1 .. 2] of integer; 
4 begin 
5 begin 
6 if max < x[norel. 2] then 
7 max - x [norel. 2] 
8 end 
9 real; 

*** 3: e - deleted 'real' 
10 max - 1 
11 end. 

The listing produced for program 43 with semantics enabled 

1 program p043(input, output); 
2 var max. norel: integer; 
3 x: array [1 .. 2. 1 .. 2] of integer; 
4 begin 
5 begin 
6 if max < x[norel. 2] then 
7 max - x[norel, 2] 
8 end 

*** 6: e - inserted '.' 
9 real; 

*** 3: e - a type name appears where a procedure was expected 
10 max - 1 
11 end. 

The listing produced for program 43 with semantics disabled 



1 program p059(input. output); 
2 var x. data: integer; 
3 begin 
4 writeln('-***error*** at least one loop exists in the'. 
5 da 

*** 11: e - deleted 'da' 
6 data); 
7 X - 1 
8 end. 

The listing produced for program 59 with semantics enabled 

*** 
*** 

1 
2 
3 
4 
5 

6 
7 
8 

11: 
13: 

program p059(input, output); 
var x. data: integer; 

begin 

e 
e 

writeln('-***error*** at least one loop exists in the'. 
da 

- 1 da• is undefined 
- inserted ' ' . 

data); 
X - 1 

end. 

The listing produced for program 59 with semantics disabled 
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1 program p074(input, output); 
2 var prime. check. x: integer; 
3 begin 
4 if prime check then x := 1 

*** 11: 
5 

e - inserted '=' 
end. 

The listing produced for program 7 4 with semantics enabled 

1 program p074(input. output); 
2 var prime, check, x: integer; 
3 begin 
4 if prime check then x := 1 

*** 6: 
*** 11: 

5 

<---------> 
e - boolean expression expected 
e - inserted '+' 
end. 

The listing produced for program 7 4 with semantics disabled 



121 

1 program p077(input. output); 
2 canst a[l] 10; a[2] 15; a[3] 25; a[4] 3·? .. a[5] 50; a[6] 75; 

<------<->------<->------<->------------------------------
*** 3: e - Malformed Declaration 

*** 10: e - expression replaced by a constant 

*** 10: e - inserted '=' before ' [' 

*** 14: e - deleted '10' 
*** 18: e - a is redeclared 

*** 19: e - expression replaced by a constant 

*** 19: e - inserted '=' before ' [' 

*** 23: e - deleted '15' 

*** 27: e - a is redeclared 
*** 28: e - expression replaced by a constant 

*** 28: e - inserted '=' before ' [' 

*** 32: e - deleted '25' 
*** 37: e - inserted '=' before ' [' 

*** 40: e - inserted '+' 
3 begin 
4 X - 1 

*** 3: e - •x• is undefined 
5 end. 

The listing produced for program 77 with semantics enabled 
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1 program p077(input, output); 
2 canst a[1] 10; a[2] 15; a[3] 25; a[4] 3;? a[5] 50; a[6] 75; 

*** 10: 
*** 10: 
*** 12: 
*** 13: 
*** 18: 
*** 19: 
*** 19: 
*** 21: 
*** 22: 
*** 27: 
*** 28: 
*** 28: 
*** 30: 
*** 31: 
*** 36: 
*** 37: 
*** 37: 
*** 39: 
*** 40: 
*** 43: 
*** 45: 
*** 49: 
*** 54: 

3 
4 

<-··-> ·<-··-> ·<-··-> ·<-··) 
e - expression replaced by a constant 
e- inserted'=' before '[' 
e - the operands of '+' are not compatible 
e - inserted '+' 
e - a is redeclared 
e - expression replaced by a constant 
e- inserted'=' before '[' 
e - the operands of '+' are no~ compatible 
e - inserted '+' 
e - a is redeclared 
e - expression replaced by a constant 
e- inserted '='before '(' 
e - the operands of '+' are not compatible 
e - inserted '+' 
e - a is redeclared 
e - expression replaced by a constant 
e- inserted '='before '(' 
e - the operands of '+' are not compatible 
e - inserted '+' 
e - replaced '?' with 'begin' 
e - replaced constant with variable 
e- inserted '·=' 
e - replaced constant with variable 
begin 

X - 1 

*** 3: e - •x• is undefined 
5 end. 

*** 3: e - inserted 'end' before ' ' 

The listing produced for program 77 with semantics disabled 



1 program p078(input. output); 
2 var prime, check. x: integer; 
3 begin 
4 if prime/check trunc(prime/check) then x - 1 

*** 17: 
5 

e - inserted '=' 
end. 

The listing produced for program 78 with semantics enabled 

1 program p078(input. output); 
2 var prime, check, x: integer; 
3 begin 
4 if prime/check trunc(prime/check) then x - 1 

*** 6: 
*** 17: 

5 

<----------6-----------------> 
e - boolean expression expected 
e - inserted '+' 
end. 

The listing produced for program 78 with semantics enabled. 
, 
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1 
2 
3 
4 
5 

*** 5: 

*** 11: 
*** 28: 
*** 39: 

6 
7 
8 
9 

program p082(input, output); 
var x: integer; 
function xfact(x: integer) : integer; 
begin 

xfact := if X = 0 then 1. 0 else x * xfact(x - 1) 

e - a function appears where a procedure was expected 
e- replaced ':='with';' 
e- deleted '1.0' 
e- replaced '*'with'·=' 

end; 
begin 

X := 1 
end. 

The listing produced for program 82 with semantics enabled 

1 program p082(input, output); 
2 var x: integer; 
3 function xfact(x: integer): integer; 
4 begin 
5 xfact :=if x = 0 then 1.0 else x * xfact(x- 1) 

*** 5: 
*** 11: 
*** 28: 
*** 37: 
*** 39: 
*** 41: 

6 
7 
8 
9 

e - a function appears where a procedure was expected 
e- replaced'·=' with'· • 
e- deleted '1.0' 
e - a parameter appears where a procedure was expected 
e- replaced '*'with '·' 
e - a functions appears where a procedure was expected 

end; 
begin 

X - 1 
end. 

The listing produced for program 82 with semantics disabled 



;~ 
I 

1 
2 
3 
4 

*** 
*** 
*** 
*** 
*** 

5 
6 
7 

5: 
8: 

23: 
24: 
33: 

program p087(input. output); 
function f(x: integer): integer; 
begin 

f ;=if x = 0 then 1 else x * f(x-1); 

e - a function appears where a procedure was expected 
e- replaced '='with ';' 
e - inserted 'goto' 
e - label 1 is undeclared 
e - replaced '*' with '·-' 

end; 
begin 
end. 

The listing produced for program 87 with semantics enabled 

1 program p087(input, output); 
2 function f(x: integer) : integer; 
3 begin 
4 f ;: if X : 0 then 1 else x * f(x-1); 

*** 5: e - a function appears where a procedure was expected 

*** 8: e - replaced '=' with '.' . 
*** 24: e - label 1 is undeclared 

*** 25: e - inserted .. ' 
*** 31: e - a parameter appears where a procedure was expected 

*** 33: e - replaced '*' with ... . 
*** 35: e - a functions appears where a procedure was expected 

5 end; 
6 begin 
7 end. 

The listing produced for program 87 with semantics disabled 

125 
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1 
2 

*** 9: 
*** 10 
*** 10: 
*** 18: 
*** 20: 
*** 25: 
*** 29: 
*** 36: 
*** 40: 
*** 54: 
*** 55: 
*** 55 
*** 59: 

3 

*** 9: 
*** 10: 
*** 10• 
*** 14• 

4 
5 
6 
7 

program p091(input. output); 
canst a(1] = 10; a(2] = 15; a(3] = 25; a[4] == 35; a[5] = 50; 

·<-------·-·----·---·------·---·----------> ·<---·--> 
e - a is redeclared 
e - Missing/Malformed Expression 
e - inserted '=' before '[' 
e- replaced ';'with '+' 

e - •a• is undefined 
e - replaced '=' with '+' 

e - replaced '·' with '+' 

e - replaced '=' with '+' 

e - replaced '·' with '+' 

e - a is redeclared 
e - expression replaced by a constant 
e - inserted '=' before '[' 
e - the operands of '-' are not compatible 

a[6] = 75; 
·<---·--> 

e - a is redeclared 
e - expression replaced by a constant 
e- inserted '='before '[' 
e - the operands of '=' are not compatible 

var x: integer; 
begin 

X := 1 
end. 

The listing produced for program 91 with semantics enabled 
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1 program p091(input, output); 
2 const a[1] = 10; a[2] = 15; a[3] = 25; a[4] == 35; a[5] = 50; 

*** 10: 
*** 10: 
*** 14: 
*** 20: 
*** 21: 
*** 21: 
*** 25: 
*** 31: 
*** 32: 
*** 32: 
*** 36: 
*** 42: 
*** 43: 
*** 43: 
*** 47: 
*** 48: 
*** 54: 
*** 55: 
*** 55: 
*** 59: 

3 

*** 9: 
*** 10: 
*** 10: 
*** 14: 

4 
5 
6 
7 

<---·--> ·<---·--> ·<---·--> ·<---··--> ·<---·--> 
e - expression replaced by a constant 
e- inserted '='before '[' 
e - the operands of '=' are not compatible 
e - a is redeclared 
e - expression replaced by a constant 
e- inserted '='before '[' 
e - the operands of '=' are not compatible 
e - a is redeclared 
e - expression replaced by a constant 
e- inserted '='before '[' 
e - the operands of '=' are not compatible 
e - a is redeclared 
e - expression replaced by a constant 
e- inserted '='before '[' 
e - the operands of '=' are not compatible 
e - deleted '=' 
e - a is redeclared 
e - expression replaced by a constant 
e- inserted '='before '[' 
e - the operands of '=' are not compatible 

a[6] = 75; 
·<---·--> 

e - a is redeclared 
e - expression replaced by a constant 
e- inserted '='before '[' 
e - the operands of '-' are not compatible 

var x: integer; 
begin 

X - 1 
end. 

The listing produced for program 91 with semantics disabled 
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1 program p096(input, output); 
2 var m: integer; 
3 fact. stirl. x: real; 
4 function pfact(f. x: real; m: integer): real; 
5 begin 
6 pfact := 1.0 
7 end; 
8 function pstirl(f. x: real; m: integer): real; 
9 begin 

10 pstirl - 1.0 
11 end; 
12 begin 
13 begin 
14 write(x, m, pfact(fact, x. m), pstirl(stirl, x, m), 
15 pfact - pstirl) 

<---> 
*** 11 : 

16 
e - a function identifier cannot be an operand of 
end. 

*** 1: e- inserted 'end' 

The listing produced for program 96 with semantics enabled 

1 program p096(input. output); 
2 var m: integer; 
3 fact, stirl. x: real; 
4 function pfact(f. x: real; m: integer): real; 
5 begin 
6 pfact := 1.0 
7 end; 
8 function pstirl(f. x: real; m: integer): real; 
9 begin 

10 pstirl - 1.0 
11 end; 
12 begin 
13 begin 

,_, 

14 write(x. m. pfact(fact. x. m). pstirl(stirl, x. m), 
15 pfact - pstirl) 

<---> 
*** 11: 

16 
e - a function identifier cannot be an operand of 
end. 

*** 3: e - inserted 'end' before '.' 

The listing produced for program 96 with semantics disabled 

,_, 
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1 program p101(input, output); 
2 var prcount. x: integer; 
3 begin 
4 99 prcount - prcount; 

*** 3: e - deleted '99' 
5 X - 1 
6 end. 

The listing produced for program 101 with semantics enabled 

1 program p101(input, output); 
2 var prcount, x: integer; 
3 begin 
4 99 prcount := prcount; 

*** 3: e - label 99 is undeclared 
*** 5: e - inserted , . , 

5 X - 1 
6 end. 

The listing produced for program 101 with semantics disabled 
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1 program p104(input. output); 
2 var x: integer; 
3 begin 
4 begin 
5 X - 1 
6 end; 
7 procedure stirling; 

*** 3: e - deleted 'procedure' 

*** 13: e - deleted 'stirling' 
8 begin 
9 X - 1 

10 end; 
11 X - 1 
12 end. 

The listing produced for program 104 with semantics enabled 

1 program p104(input. output); 
2 var x: integer; 
3 begin 
4 begin 
5 X - 1 
6 end; 
7 procedure stirling; 

*** 3: e - deleted 'procedure' 
*** 13: e - •stirling• is undefined 

8 begin 
9 X - 1 

10 end; 
11 X - 1 
12 end. 

The listing produced for program 104 with semantics disabled 
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1 program p106(input, output); 
2 const n = 10; 
3 var next, kount. x: integer; 
4 arr: array [1 .. n] of integer; 
5 begin 
6 a.rr - [2 .. n]; 

<-----------) 
*** 3: e - incompatible assignment 

7 ko nt - o· 

*** 3: e - 'ko• is undefined 

*** 5: e - inserted ' ' 
8 next - 2· 
9 X - 1 

10 end. 

The listing produced for program 106 with semantics enabled 

1 program p106(input, output); 
2 const n = 10; 
3 var next, kount. x: integer; 
4 arr: array [1 .. n] of integer; 
5 begin 
6 arr - [2 .. n]; 

<-----------> 
*** 3: e - incompatible assignment 

7 ko nt - 0; 

*** 3: e - 'ko• is undefined 

*** 5: e - inserted '.' . 
*** 6: e - •nt• is undefined 

8 next - 2· 
9 X - 1 

10 end. 

The listing produced for program 106 with semantics disabled 



132 

1 program p109(input, output); 
2 var i. x: integer; 
3 list: array (1 .. 1 0] of integer; 
4 begin 
5 readln( list_i?); 

*** 15: e - replaced ' ' with ' (' 

*** 17: e - replaced '?' with '] ' 
6 X - 1 
7 end. 

The listing produced for program 106 with semantics enabled 

1 
2 
3 
4 
5 

*** 11: 

*** 15: 
*** 17: 

6 
7 

program p109(input. output); 
var i, x: integer; 

list: array (1 .. 10] of integer; 
begin 

readln( list_i?); 

e - a variable appears where a function was expected 
e- replaced ' 'with '(' 
e - replaced '?' with ')' 

X - 1 
end. 

The listing produced for program 106 with semantics disabled 



... 

... 

1 
2 
3 
4 
5 
6 

*** 12: 
*** 14: 
*** 28: 
*** 30: 

7 
8 

program p112(input, output); 
var letter: char; 

:r:: integer; 
begin 

read (letter); 
if letter<>'.' and letter<>' ' then 

A <-> 
e - the operands of '<>' are not compatible 
e - a character cannot be an operand of 'and' 
e - deleted '<>' 
e- deleted '' '' 

:r: := 1 
end. 

The listing produced for program 112 with semantics enabled 

1 
2 
3 
4 
5 
6 

*** 12: 
*** 14: 
*** 14: 
*** 28: 
*** 30: 

7 
8 

program p112(input, output); 
var letter: char; 

:r:: integer; 
begin 

read(letter); 
if letter<>'.' and letter<>' ' then 

A <->---------->A <-> 
e - the operands of '<>' are not compatible 
e - a character cannot be an operand of 'and' 
e - a boolean value cannot be an operand of '+' 

e - replaced '<>' with '+' 

e - a character cannot be an operand of '+' 

:r: - 1 
end. 

The listing produced for program 112 with semantics disabled 
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1 program p115(input, output); 
2 type alfa = packed array [1 .. 10] of char; 
3 var buf: array [1 .. 1 0] of char; 
4 a: alia; 
5 list: array [1 . 10] of alia; 
6 t, x: integer; 
7 begin 
8 pack(buf. 1. a); 
9 list(t) - a, 

*** 7: e - replaced ' (' with ' [' 

*** 9: e - replaced ') ' with '] ' 
10 X - 1 
11 end. 

The listing produced for program 115 with semantics enabled 

1 
2 
3 
4 
5 
6 
7 
8 
9 

*** 3: 
*** 11: 

*** 14: 
10 
11 

program p115(input. output); 
type alfa =packed array [1 .. 10] of char; 
var buf: array [1 .. 10] of char; 

a: alia; 
list: array [1 .. 10] of alfa; 
t. x: integer; 

begin 

e 
e 

pack(buf, 1. a); 
list(t) : = a; 

- a variable appears 
- replaced , ·=' with 

where 
'. J 

e - a variable appears where 
X - 1 

end. 

a procedure 

a procedure 

was 

was 

The listing produced for program 115 with semantics disabled 

expected 

expected 



1 
2 
3 
4 

*** 3: 
*** 31: 

5 
6 
7 
8 
9 

program p118(input. output); 
var x: integer; 

begin; 
procedure factr(n: integer; 

<------------------------> 
e - Malformed Statement 
e - Malformed Statement 

begin 
X := 1 

end; 
X := 1 

end. 

var factor: integer); 

<------------------> 

The listing produced for program 118 with semantics enabled 

1 program p118(input. output); 
2 var x: integer; 
3 begin; 
4 procedure factr(n: integer; var factor: integer); 

<-----A---------> <------------------> 
*** 3: e - deleted 'procedure' 

*** 13: e - Malformed Statement 

*** 13: e - 1 factr• is undefined 

*** 19: e - •n• is undefined 

*** 31: e - Malformed Statement 
5 begin 
6 X - 1 
7 end; 
8 X - 1 
9 end. 

The listing produced for program 118 with semantics disabled 
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1 
2 
3 
4 
5 
6 

*** 5: 

*** 7: 
7 
8 
9 

*** 6: 
10 

*** 14: 
11 
12 
13 

program p123(input. output); 
const word= 'hello'; 
var x. h. cntr. 1: integer; 

hi: array [1 .. 10] of packed array [1 .. 5] of char; 
begin 

hi(h) :=word; 

e- replaced '('with '[' 
e- replaced')' with ']' 

if h <= 1 then 
begin 

writeln(?error sort?. cntr. h. 1,); 

<--------------------------------> 
e - Malformed Statement 

goto 1; * abnrm * 
<-------

e - Malformed Statement 
end; 
X :: 1 

end. 

The listing produced for program 123 with semantics enabled 

1 program p123(input. output); 
2 const word= 'hello'; 
3 var x. h. cntr. 1: integer; 
4 hi: array [1 .. 10] of packed array [1 .. 5] of char; 
5 begin 
6 hi(h) :=word; 

*** 3: e - a variable appears where a procedure was expected 

*** 9: e - replaced J ,_, with ' .. 
*** 12: e - a constant appears where a procedure was expected 

7 if h <= 1 then 
8 begin 
9 writeln(?error sort?. cntr. h. 1.); 

<--------------------------------> 

*** 6: e - Malformed Statement 
10 goto 1; * abnrm * 

<-------

*** 14: e - Malformed Statement 
11 end; 
12 X - 1 
13 end. 

The listing produced for program 123 with semantics disabled 



1 program p125(input. output); 
2 type alfa = packed array [1-10] of char; 

*** 30: 
3 
4 
5 
6 

e - replaced '-' with ' 
var x: integer; 

begin 
X := 1 

end. 

The listing produce for program 125 with semantics enabled 

1 
2 

*** 29: 

*** 30: 
3 
4 
5 
6 

program p125(input, output); 
type alfa = packed array [1-10] of char; 

<--> 
e - lower bound exceeds upper bound 
e - inserted ' .. ' before '-' 

var x: integer; 
begin 

X := .1 
end. 

The listing produced for program 125 with semantics disabled 
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1 
2 

*** 2: 
*** 25: 
*** 41: 

3 

*** 36: 
4 
5 
6 
7 

program p126(input. output); 
matrixknown(name: char. lower: boolean. 

e - inserted 'procedure' 
e- replaced'.' with';' 
e - replaced '.' with ';' 

var pointer: integer): boolean; 
<-------> 

e - return type specified for a procedure 
var x: integer; 

begin 
X :: 1 

end. 

*** 6: E- Unrecoverable Syntax Error 

The listing produced for program 126 with semantics enabled 

1 
2 

*** 2: 
*** 3: 
*** 15: 
*** 21: 
*** 27: 
*** 34: 

3 

*** 15: 
*** 19: 
*** 28: 
*** 36: 

4 

*** 5: 
5 
6 

*** 5: 
7 

*** 5: 

program p126(input. output); 
matrixknown(name: char. lower: boolea~. 

e - inserted 'begin' 
e - •matrixknown• is undefined 
e - •name• is undefined 
e - type name appears where an expression was expected 
e - 1 lower• is undefined 
e - type name appears where an expression was expected 

var pointer: integer): boolean; 

e - deleted 'var' 
e - •pointer• is undefined 
e - type name appears where an expression was expected 
e- replaced ':'with'·' 

var x: integer; 
<------------> 

e - Malformed Statement 
begin 

X - 1 

e - •x• is undefined 
end. 

e - inserted 'end' before ' ' 

The listing produced for program 126 with semantics disabled 
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" 

Appendix C 

Programs for which Berkeley Pascal or the 

Burke-Fisher System Outperform the Pascal Auditor 

This appendix contains listings of the programs in the Ripley-Druseikis suite for which 

Berkeley Pascal [GHJ79] or the Burke-Fisher system [BF82] produce better recoveries 

than the Pascal auditor. Some listings have been altered slightly to make them fit within 

the page margins. Lines that were too long to fit within the margins were split into two 

lines. The listings for each program are accompanied by an note explaining why the 

Pascal auditor produced an inferior recovery. 
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1 program p039(input, output); 
2 var x. m. tim1: integer; 
3 begin 
4 readln(x. m); 
5 tim1: 1 x; 

e ------------- --- Replaced illegal character with a '=' 
6 X :: 1 
7 end. 

Berkeley Pascal's listing for program 39 

1 program p039(input. output); 
2 var x. m. tim1: integer; 
3 begin 
4 readln(x. m); 
5 tim1: 1 x; 

<-----> 
*** 3: e - Malformed Statement 

6 X - 1 
7 end. 

The Pascal auditor's listing for program 39 

Berkeley Pascal treats the compound symbol ':=' as the sequence consisting of the 

symbol ':' followed by the symbol '='. Hence, it is able to repair the error in this 

example by replacing the symbol "" with the symbol '='. The Pascal auditor treats the 

compound symbol ':=' as a single symbol. Thus, for the Pascal auditor to achieve the 

effect of the repair chosen by Berkeley Pascal, the Pascal auditor would have to replace 

the individual symbols ':' and "" by the symbol ':='. However, the local recovery 

algorithm used by the Pascal auditor does not possess the ability to replace a sequence of 

tokens with another token. Therefore, the Pascal auditor is unable to find a viable repair 

for this error. 



1 program p054(input. output); 
2 canst listsize = 5; 
3 var listdata: array [1 .. listsize]; 

E ----------------------------------------- --
E -----------------------------------------

4 x: integer; 
5 begin 
6 X - 1 
7 end. 

Berkeley Pascal's listing for program 54 

1 program p054(input. output); 
2 canst listsize = 5; 
3 var listdata: array [1 .. listsize]; 

*** Syntax Error: Unexpected input --

Expected keyword of 
Inserted identifier 

•oF IDENTIFIER• inserted to match 1 ARRAY 1 on line 3 

4 x: integer; 
5 begin 
6 X - 1 
7 end. 

The Burke-Fisher system's listing for program 54 

1 
2 
3 

*** 17: 
4 
5 
6 
7 

program p054(input, output); 
canst listsize = 5; 
var listdata: array [1 .. listsize]; 

<------------------> 
e - Missing/Malformed Type 

x: integer; 
begin 

X := 1 
end. 

The Pascal auditor's listing for program 54 

141 

Both Berkeley Pascal and the Burke-Fisher system are able to insert two tokens in 

some contexts. The Pascal auditor's local recovery algorithm is unable to insert more 

than one token under any circumstances. This example demonstrates that the ability to 

do multiple insertions sometimes leads to better recoveries. Because the only viable 

repair for the error in this example consists of inserting two tokens, the Pascal auditor is 

forced to resort to panic mode. 
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1 program p055(input, output); 
2 canst listsize = 5; 
3 var listptr :=array (1 .. listsize]; 

e ---------------------·--- Deleted '=' 
E ------------------------------------------ --
E ------------------------------------------

4 x: integer; 
5 begin 
6 X - 1 
7 end. 

Berkeley Pascal's listing for program 55 

*** 
*** 

1 program p055(input, output); 
2 const listsize = 5; 
3 var listptr :=array (1 .. listsize]; 

Syntax 
Syntax 

Error: 
Error: 

•·• expected instead of •:=• 
Unexpected input --

Expected keyword of 
Inserted identifier 

4 x: 
•oF IDENTIFIER• inserted to match 1 ARRAY 1 on line 3 

integer; 
5 begin 
6 X = 1 
7 end. 

The Burke-Fisher system's listing for program 55 

1 
2 
3 

*** 15: 
*** 18: 

4 
5 
6 
7 

program p055(input. output); 
const listsize = 5; 
var listptr :=array (1 .. listsize]; 

<------------------> 
e- replaced':=' with':' 
e - Missing/Malformed Type 

x: integer; 
begin 

X := 1 
end. 

The Pascal auditor's listing for program 55 

This example simply repeats the lesson of the previous example. 



..... 

'"'"' 

1 program p069(input, output); 
2 var sub, x. f: integer; ' 
3 count, listdata: array [1 .. 10] of integer; 
4 begin 
5 if count[listdata[sub] := 0 then 

e ------------------------------- Replaced'·' with a']' 
6 begin 
7 f := listdata[sub]; 
8 end; 
9 X - 1 

10 end. 

Berkeley Pascal's listing for program 69 

1 program p069(input. output); 
2 var sub, x. f: integer; 
3 count. listdata: array [1 .. 10] of integer; 
4 begin 
5 if count[listdata[sub] := 0 then 

*** Syntax Error: ·=· expected instead of I: :I 

*** Syntax Error: •p expected after this token 
6 begin 
7 f - listdata[sub]; 
8 end; 
9 X - 1 

10 end. 

The Burke-Fisher system's listing for program 69 

1 
2 
3 
4 
5 

program p069(input. output); 
var sub, x. f: integer; 
count, listdata: array [1 .. 10] of integer; 

begin 
if count[listdata[sub] := 0 then 

<----------------------> 
*** 6: e -Missing/Malformed Expression 

6 begin 
7 f := listdata[sub]; 
8 end; 
9 X - 1 

10 end. 

The Pascal auditor's listing for program 69 
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Berkeley Pascal and the Burke-Fisher both handle the error in program 69 better 

than the Pascal auditor. However, they find different repairs for the error. Berkeley 

Pascal is able to repair the error by replacing the colon ':' in the symbol ':=' by a right 

bracket ']'. This repair is possible because Berkeley Pascal treats·the compound symbol 

':=' as two separate symbols (see the note for program 39 earlier in this appendix). 

Neither the Burke-Fisher system nor the Pascal auditor are able to repair the error in 

this manner because they treat the symbol ':=' as a single token. 

The Burke-Fisher system repairs the error by replacing the symbol ':=' with the 

symbol '=' and then inserting a right bracket following the constant 0. These are really 

two separate repairs. The Burke-Fisher system will invoke its error recovery algorithm 

twice for this example: once when it read the symbol ':=', and again when it reads the 

keyword then. The Pascal auditor is unable to r.epair the error in this way because it 

requires that the parser must be able to shift at least two tokens following a repair for 

that repair to be considered viable. Therefore, it is unable to replace the symbol ':=' by 

the symbol '=', because the parser is unable to shift the keyword then following that 

repair. 



1 program p073(input. output); 
2 var check. prime. x: integer; 
3 begin 
4 check: 1? 

E --------------- Expected '=' 
5 begin 
6 while check)' prime do x := 1 

E ----------------------·--- Unmatched ' for string 
4 check: 1? 

e ----------------·--- Replaced illegal character with a 
6 while check)' prime do x := 1 

E ---------------------·--- Missing/malformed expression 
7 end 
8 end. 

Berkeley Pascal's listing for program 73 

1 
2 
3 
4 

*** 3: 
5 
6 

*** 11: 
7 
8 

program p073(input. output); 
var check. prime. x: integer; 

begin 
check: 1? 
<-------

e - Malformed Statement 
begin 

while check)' prime do x := 1 
<-----------> 

e - Missing/Malformed Expression 
end 

~end. 

The Pascal auditor's listing for program 73 
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'.' 

Berkeley Pascal finds better repairs for the errors on line 4 than does the Pascal 

auditor. Although the listing that Berkeley Pascal generates does not made it clear, 

Berkeley Pascal repairs the errors by inserting the character '=' following the character 

':'and by replacing the character'!' with the token';'. Yet again, the fact that Berkeley 

Pascal treats the compound symbol ':=' as two separate symbols allows the repair to be 

done. The Pascal auditor could not have produced the same repair even if it treated the 

symbol ':=' as separate symbols because it would not be able to parse far enough after 

the repair for the repair to be considered viable. 
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1 program p093(input, output); 
2 var i, x: integer; 
3 begin 
4 repeat 
5 X :: 1 
6 until -[sqrt(i); 

***Syntax Error: Unexpected •[• ignored 
7 X := 1 
8 end. 

The Burke-Fisher system's listing for program 93 

1 program p093(input, output); 
2 var i. x: integer; 
3 begin 
4 repeat 
5 X - 1 
6 until -[sqrt(i); 

«<----->-
*** 9: e - boolean expression expected 
*** 10: e - numeric expression expected 
*** 11: e - set member type is not ord'inal 
*** 18: e - inserted '] ' before '.' 

7 X - 1 
8 end. 

The Pascal auditor's listing for program 93 

Unlike either the Pascal auditor or Berkeley Pascal, the Burke-Fisher system is able 

to repair errors by deleting or replacing tokens that the parser has shifted but has not 

yet used in a reduction. In this example, the Burke-Fisher system is able to find a better 

repair for the syntax error detected on line 6 because it is able to delete the left bracket 

'['. The Pascal auditor is unable to make the same repair because the error is not 

detected until the semicolon ';' has been read. Therefore, the Pascal auditor will have 

already shifted all symbols up but not including the identifier i by the time it detects the 

error. 
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1 program p097(input, output); 
2 label 2; 
3 var count. x: integer; 
4 begin 
5 begin 
6 count - 0; 
7 go to 2 

*** Syntax Error: •GoTo• expected 
8 end; 
9 end. 

The Burke-Fisher system's listing for program 97 

1 program p097(input, output); 
2 label 2• 

3 var count. x: integer; 
4 begin 
5 begin 
6 count - 0; 
7 go to 2 

A A 

*** 5: e - •go• is undefined 

*** 8: e - replaced 'to' with , ·=' 
8 end; 
9 end. 

The Pascal auditor's listing for program 97 

The Burke-Fisher error recovery algorithm considers some types of repairs that are 

not considered by the Pascal auditor. In particular, it is able to merge the texts of 

adjacent tokens to form a new token. Burke and Fisher call this form of repair token 

merging. In this example, the Burke-Fisher system is able to merge the identifier go and 

the keyword to to form the keyword goto. The Pascal auditor does not do token 

merging. Therefore, it is unable to repair the error in this example. 
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1 program p101(input, output); 
2 var prcount. x: integer; 
3 begin 
4 99 prcount := prcount; 

~ ------------- Inserted '·' 
5 X := 1 
6 end. 

E 4 - 99 is undefined 

Berkeley Pascal's listing for program 101 

1 program plOl(input. output); 
2 var prcount. x: integer; 
3 begin 
4 99 prcount := prcount; 

*** Syntax Error: •·• expected after this token 
5 X := 1 
6 end. 

The Burke-Fisher system's listing for program 101 

1 program p101(input. output); 
2 var prcount. x: integer; 
3 begin 
4 99 prcount - prcount; 

*** 3: e - deleted '99' 
5 X - 1 
6 end. 

The Pascal auditor's listing for program 101 

Program 101 demonstrates that using semantics to guide the choice of a repair can 

result in inferior recoveries. The number 99 on line 4 was probably intended to be a 

label. However, because 99 has not been declared to be a label and because it has not 

been used in a goto-statement, the Pascal auditor does not consider it a label. Therefore, 

when the Pascal auditor tries inserting a colon ':' after the number 99, it detects a 

semantic error. Since deleting the number 99 results in a program that is both 

semantically and syntactically correct, the Pascal auditor chooses that repair over 

inserting a colon. 



program p123(input, output); 
const word = 'hello'; 
var x, h. cntr, 1: integer; 

1 
2 
3 
4 hi: array [1 .. 10] of packed array [1 .. 5] of char; 
5 begin 
6 hi(h) :=word; 

E --------·--- Replaced variable id with a procedure id 
E --------------·--- Malformed statement 

7 if h <= 1 then 
8 begin 
9 writeln(?error sort?, cntr, h. 1,); 

E -------------------·--- Illegal character 
E ------------------------------·--- Illegal character 
E -------------------------------------------·--- Deleted 

10 goto 1; * abnrm * 
E -------------------·--- Malformed statement 

11 end; 
12 X := 1 
13 end. 

E 10 - 1 is undefined 

Berkeley Pascal's listing for program 123 

1 
2 
3 

program p123(input, output); 
const word= 'hello'; 
var x. h, cntr, 1: integer; 

' ' 

4 hi: array [1 .. 10] of packed array [1 .. 5] of char; 
5 
6 

*** 5: 
*** 7: 

7 
8 
9 

*** 6: 
10 

*** 14: 
11 
12 
13 

begin 
hi(h) :=word; 

e- replaced '('with '[' 
e- replaced ')'with ']' 

if h <= 1 then 
begin 

writeln(?error sort?, cntr, h, 1,); 

<--------------------------------> 
e - Malformed Statement 

goto 1; * abnrm * 
<-------

e - Malformed Statement 
end; 
X := 1 

end. 

The Pascal auditor's listing for program 123 
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Berkeley Pascal is unusual in that its lexical analyzer recognizes the character '!' as 

a string quote. "Whenever '!' appears, the lexical analyzer issues an error message 

announcing that it has found an illegal character. It then checks if there is another 

occurrence of the character '!' on the same line, and if so, constructs a string from the 

text delimited by the two question marks. Thus, Berkeley Pascal is easily able to handle 

the errors on line 9. The Pascal auditor, on the other hand, treats the character '!' just 

as it would any other illegal character, and so it has to resort to panic mode. Therefore, 

it does not detect the later error on the same line. 

Berkeley Pascal also does better than the Pascal auditor in that it notes that the 

label 1 has not been declared. Because the Pascal auditor does LR(2) error checking, it 

detects the error on line 10 before it has finished reducing the goto statement. The fact 

that the label is undeclared is detected and an error message is sent to the standard 

routine for reporting errors. However, because the error is detected while the Pascal 

auditor is executing it panic mode algorithm, the error message is suppressed. 



Appendix D 

Some Examples for which the Pascal Auditor 
Produces Better Recoveries than Berkeley Pascal 

This appendix contains the listings generated for a sample of the programs for which the 

Pascal auditor produces better recoveries than does Berkeley Pascal [GHJ79]. Some 

listings had to be modified to make all the lines fit within the margins of the page. Also, 

cautionary warning messages have been deleted. (A cautionary warning message is a 

warning message caused by a suspicious but legal construct). The listings for each 

program are accompanied by a note explaining the reasons for the differences in the 

recoveries. 
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1 program p005(input. output); 
2 function getelement(var x: integer); boolean; 

E 2 - Function type must be specified 

e --------------------------------------------- ---
Replaced identifier with a keyword forward 

3 var q: integer; 
w 3 - Variable declarations should precede routine declarations 

4 begin 
5 X := 1 

E ---------- --- Undefined variable 
6 end; 

E -----------·--- Expected ' ' 
7 begin 
8 end. 

In program p: 
E - Unresolved forward declaration of function getelement 
E - x undefined on line 5 

6 end; 
E ----------- --- End-of-file expected - QUIT 

Berkeley Pascal's listing for program 5 

*** 

1 program p005(input, output); 
2 function getelement(var x: integer); boolean; 

38: 
3 
4 
5 
6 
7 
8 

e- replaced ';'with 
var q: integer; 

begin 
X := 1 

end; 
begin 
end. 

'.' 

The Pascal auditor's listing for program 5. 

This example illustrates the harm caused by default reductions. Unlike ANSI 

Pascal [ANS83], Berkeley Pascal treats the symbol "forward" as a keyword. The 

grammar for Berkeley Pascal prohibits any symbol from appearing after the first 

semicolon on line 2 other than the keyword forward and another nonstandard keyword. 

Therefore, if Berkeley Pascal's parser did not do default reductions, it could not do any 

reductions involving the first semicolon on line 2 before detecting a syntax error. 

However, because Berkeley Pascal does do default reductions, it reduces the entire 

function header including the semicolon before it detects the error. Since the semicolon 

has been used in a reduction, Berkeley Pascal's local recovery algorithm cannot delete or 

replace it. Therefore, it must find the best repair it can without changing the text up to 

and including the semicolon. 
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If the symbol "forward" had been treated as a keyword in the Pascal auditor, the 

error in this example would have been easy to handle. Any parser that avoids erroneous 

default reductions would catch the error in time to permit the semicolon to be replaced 

by a colon without requiring backtracking. Since the Pascal auditor does LR(2) error 

checking, it will never perform an erroneous default reduction. However, the Pascal 

auditor treats the symbol "forward" as an identifier rather than as a keyword. Hence, 

the error is detected by a semantic guard. Therefore, the reason it is possible to replace 

the semicolon in this example is that the parser for the Pascal auditor does no reductions 

involving the semicolon or the identifier "boolean" before the semantic guard is executed. 
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1 
2 
3 

program p011(input. output); 
var x. nonprime: integer; 

numprime: array [1 .. 10] of integer; 
4 begin 
5 if nonprime = 0 then numprime.x. := numprime(x) + 1; 

E -------------------------------------·--- Malformed statement 
6 X := 1 
7 end. 

Berkeley Pascal's listing for program 11 

1 program p011(input, output); 
2 var x. nonprime: integer; 
3 numprime: array [1 .. 1 0] of integer; 
4 begin 
5 if nonprime = 0 then numprime.x - numprime(x) + 

*** 32: e - replaced I I with I [I 

*** 34: e - replaced I I with I] I 

*** 47: e - replaced I (I with I [I 

*** 49. e - replaced I) I with I] I 

6 X - 1 
7 end. 

The Pascal auditor's listing for program 11 

1; 

Program 11 illustrates the advantages of using bracket repair. When Berkeley 

Pascal considers repairing the error in this program by replacing the comma ',' by a left 

bracket '[', it discovers a second error upon reading the dot '.'. The reason Berkeley 

Pascal discovers the second error at that point is that it distinguishes between scalar 

variables and record variables syntactically. Thus, the error that Berkeley Pascal detects 

is that a scalar variable has been followed by a dot. Because of the second error, 

Berkeley Pascal decides that replacing the comma by a left bracket is not a viable repair. 

The Pascal auditor also tries replacing the comma by a left bracket, and it too 

decides that that repair is not viable. In fact, it fails to find any viable single token 

repairs. However, when it tries replacing bracket repairs, it finds that replacing the 

comma by a left bracket and the dot by a right bracket allows parsing to continue for an 

acceptable distance. 

When the Pascal auditor attempts to reduce the second occurrence of the identifier 

numprime on line 5 to a function name, it discovers a semantic error that triggers the 

syntactic error recovery algorithm. None of the single token repairs attempted are found 

to be satisfactory, but the bracket repair consisting of replacing the parentheses with the 

corresponding square brackets is found to be the best repair for the semantic error. 



1 program p020(input. output); 
2 funtion getelement(var x: integer): boolean; 

e ------------ Replaced identifier with a keyword procedure 
E 2 - Procedures do not have types. only functions do 

3 var q: integer; 
4 begin 
5 X := 1 
6 end; 
7 begin 
8 end. 

Berkeley Pascal's listing for program 20 

1 program p020(input. output); 
2 funtion getelement(var x: integer): boolean; 

*** 3: e - replaced 'funtion' with 'function' 
3 var q: integer; 
4 begin 
5 X := 1 
6 end; 
7 begin 
8 end. 

The Pascal auditor's listing for program 20 
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This example shows the value of the Pascal auditor's spelling matcher. Berkeley 
Pascal attempts replacing the identifier funtion with the keyword function and with 
the keyword procedure. Both repairs are found to be viable, but because procedures 
tend to be more common than functions, Berkeley Pascal chooses to replace the identifier 
funtion with the keyword procedure. Had Berkeley Pascal used a spelling matcher to 
help determine the costs of the repairs, as does the Pascal auditor, it would have been 
able to recognize that, in this instance, it is better to replace the identifier with the 
keyword function. 

For this particular program, the spelling matcher is not the sole factor that causes 
the Pascal auditor to favor the keyword function over the keyword procedure. 
Because the Pascal auditor inspects up to 12 tokens during a forward move, it discovers a 
semantic error when it reaches the return type specifier at the end of the procedure 
header. The error is detected semantically because there is an error production that 
allows a return type specifier in a procedure header (see the explanation of rule 133 in 
Appendix A). However, if there had been more than 12 tokens between the detection 
point of the first error and the return type specifier, the spelling matcher alone would 
have caused the Pascal auditor to favor the keyword function over the keyword 
procedure. 
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1 program p023(input. output); 
2 var m. x: integer; 
3 !fact: real; 
4 function fact(n: integer): integer; 
5 begin 
6 fact := 1 
7 end; 
8 function power(k, y: integer): integer; 
9 begin 

10 power - 1 
11 end; 
12 begin 
13 ffact•(power(m. x) * exp(-m)) div (fact(x)); 

E ------------- --- Illegal character 
14 X : = 1 
15 end. 

Berkeley Pascal's listing for program 23 

1 program p023(input. output); 
2 var m. x: integer; 
3 !fact: real; 
4 function fact(n: integer): integer; 
5 begin 
6 fact := 1 
7 end; 
8 function power(k, y: integer)· integer; 
9 begin 

10 power - 1 
11 end; 
12 begin 
13 ffact•(power(m. x) * exp(-m)) div (fact(x)); 

*** 8: e- replaced ••• with'·=' 
14 X := 1 
15 end. 

The Pascal auditor's listing for program 23 

Three of the examples in Appendix C showed that treating the compound symbol 

':=' as two separate tokens could lead to better recoveries. Program 23 shows that 

treating ':=' that way can also lead to inferior recoveries. The Pascal auditor can easily 

replace the illegal token "" with the symbol ':=' because it treats ':=' as a single token. 

Berkeley Pascal, however, would have to replace the token "" with the pair ':' and '='. 
Berkeley Pascal does not attempt any such multi-symbol repairs.· The only other repair 

that might appear to be viable is to delete the token "". However, since Berkeley Pascal 
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has reduced the identifier !fact to a variable name, that repair immediately leads to 

detection of a new syntax error. Therefore, Berkeley Pascal is forced to resort to panic 

mode. 
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1 program p035(input. output); 
2 const listsize = 10; 
3 var x : integer; 
4 procedure intlkdlst(size: integer); 
5 begin 
6 end; 
7 begin 
8 intlkdlst[listsize]; 

E --------·--- Replaced procedure id with a array id 
E --------------------------- Expected'·' 

9 X := 1 
10 end. 

In program p035: 
E - intlkdlst improperly used on line 8 

Berkeley Pascal's listing for program 35 

1 program p035(input. output); 
2 const listsize = 10; 
3 var x integer; 
4 procedure intlkdlst(size: integer); 
5 begin 
6 end; 
7 begin 
8 intlkdlst[listsize]; 

*** 12: e - replaced . [. with . ( . 
*** 21: e - replaced '] . with . ) . 

9 X - 1 
10 end. 

The Pascal auditor's listing for program 35 

Program 35 at first appears to be another demonstration of the advantage of 

performing bracket repairs. However, closer examination of the workings of Berkeley 

Pascal reveals that the poor recovery from the errors in this program are due to badly 

chosen costs. Berkeley Pascal assigns a cost of 3 to replacing a procedure identifier with 

an array identifier. The cost assigned to replacing a left square bracket with a left 

parenthesis is 10. Therefore, even if bracket repair were considered, it would be rejected. 

This contention is more clearly shown by a slightly modified example. The following 

listing was produced by Berkeley Pascal: 
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1 program p035(input, output); 
2 const listsize = 10; 
3 var x : integer; 
4 procedure intlkdlst(size: 
5 begin 
6 end; 
7 begin 
8 intlkdlst[listsize + 1); 

E ------------ Replaced procedure id 
E ------------------------------

9 X := 1 
10 end. 

In program p035: 

integer); 

with a array id 
Missing/malformed expression 

E - intlkdlst improperly used on line 8 
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Here, it is clearly best to replace the left square bracket with a left parenthesis. 

However, because of the poor choice of costs, it still chooses to replace the procedure 

identifier intlkdlst with an array identifier. 
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1 program p074(input. output); 
2 var prime. check. x: integer; 
3 begin 
4 if prime check then x := 1 

e --------------------- Inserted '+' 
5 end. 

E 4 - Type of expression in if statement must be Boolean, not integer 

Berkeley Pascal's listing for program 74 

1 program p074(input, output); 
2 var prime. check. x: integer; 
3 begin 
4 if prime check then x := 1 

*** 11: 
5 

e - inserted '=' 
end. 

The Pascal auditor's listing for program 74 

Program 7 4 shows the advantage gained through the use of general static semantic 

information during error recovery. Both the Pascal auditor and Berkeley Pascal assign a 
lower cost to inserting the symbol '+' than to inserting the symbol '='. However, when 

the Pascal auditor tries inserting a '+', it discovers that a semantic error will be detected 
later. Therefore, it increases the cost of inserting the symbol '+'. and so inserting the 
symbol '=',which does not lead to a semantic error, turns out to be the least cost repair. 

Since Berkeley Pascal does not check for general static semantic errors until after parsing 

has been completed, it does not detect the semantic error until it is too late to affect the 
choice of recoveries. 
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1 program sort119(input, output); 
2 canst limit = 100; 
3 limitp1 = limit + 1; 

E ------------------------------ --- Expected 
e ------------------------------ --- Replaced 

4 var x: integer; 
w 3 - Label declarations should precede canst. 

type. var and routine declarations 
5 begin 
6 X := 1 
7 end. 

In program sort119: 
E - label 1 was declared but not defined 

Berkeley Pascal's listing for program 119 

1 
2 
3 

program sort119(input. output); 
canst limit = 100; 

limitp1 = limit + 1; 
<-------> 

'.' 
'+' with a keyword label 

*** 19: 
4 

e - expression replaced by a constant 
var x: integer; 

5 
6 
7 

begin 
X := 1 

end. 

The Pascal auditor's listing for program 119 
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The differences in the recoveries produced for program 119 are the result of the 

Pascal auditor's more thorough use of error productions. Berkeley Pascal does not take 

advantage of error productions to handle common errors that are beyond the capabilities 

of its local recovery algorithm. The Pascal auditor is more complete in this respect, 

though even its handling of error productions could be improved (see Section 10.2). 
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1 program p125(input. output); 
2 type alfa = packed array [1-10] of char; 

e ----------------------------------- Inserted ' 
E 2 - Range lower bound exceeds upper bound 

3 var x: integer; 
4 begin 
5 X ;: 1 
6 end. 

Berkeley Pascal's listing for program 125 

1 program p125(input. output); 
2 type alfa = packed array [1-10] of char; 

*** 30: 
3 
4 
5 
6 

e - replaced '-' with ' 
var x: integer; 

begin 
X := 1 

end. 

The Pascal auditor's listing for program 125 

The recovery that the Pascal auditor produces for program 125 is the most complex 

application of semantic information for any program in the test sample. The Pascal 

auditor does not choose to insert the symbol ' .. ' before the hyphen because that repair 

will lead to a later semantic error. It chooses to replace the hyphen instead because that 

repair does not result in any errors during the forward move. Berkeley Pascal, the 

Burke-Fisher system, and the Pascal auditor with semantics disabled all choose to repair 

this error by inserting the symbol ' .. ' before the hyphen. That repair is the natural 

choice since insertions are normally less costly than replacements. 
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